

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	JIP 0.6 documentation

JIP Pipeline system

JIP is another approach to implement a pipeline system that helps to manage a
large number of jobs on a compute cluster. It simplifies the process of
creating computational pipelines with dependency support, automatic expansions
and simplified management of jobs and resources.

Even if you are not interested in pipeline and dependencies; JIP offers a set of
management commands to simplify interactions with your compute cluster via allowing you to submit commands quickly, to restart and to move jobs, to edit commands
interactively, to avoid duplicated job submission and more.

Quick start

There is more documentation available and there are a few things you might need
to understand before you create more sophisticated work-flows. But here is
the quick-start to install and to configure JIP on your system. Take a look at the
setup guide for more detailed description of the installation
and configuration process.

Installation

You can install JIP quickly into your $HOME folder:

$~> pip install jip --user

Configuration

JIP reads $HOME/.jip/jip.json to load your configuration. Create the file
with the following content.

For a Slurm cluster:

{
 "cluster": "jip.cluster.Slurm"
}

For a PBS/Torque cluster:

{
 "cluster": "jip.cluster.PBS"
}

For a Gridengine/SGE/OGE cluster:

{
 "cluster": "jip.cluster.SGE",
 "sge" : {
 "threads_pe": "threads"
 }
}

Please note that in order to submit multi-threaded jobs for SGE, you have to
specify the parallel environment that is configured for threaded jobs.

For a Platform LSF or Openlava cluster:

{
 "cluster": "jip.cluster.LSF"
}

For the JIP local scheduler:

{
 "cluster": "jip.grids.JIP"
}

In order to use the local scheduler that ships with JIP, please check the
documention on how you can configure and start the JIP
scheduler on you local machine.

Run or submit commands

You can run or submit a bash command using the jip bash <jip_bash> command.
For example:

$> jip bash -c hostname

This will run hostname locally. Add the -s option to submit the command
as a job to your cluster:

$> jip bash -s -c hostname

You can check the status of the job with jip jobs <jip_jobs>:

$> jip jobs

Take a look at the JIP command line wrapper <cli> that contains a list of all
available JIP commands.

Write a JIP Script

This is the famous hello world:

#!/usr/bin/env jip
Greetings
usage:
hello.jip <name>

echo "Hello ${name}"

Make the file executable and you can use the JIP interpreter to run it or
submit it:

$> chmod +x hello.jip
$> ./hello.jip Joe # runs the script
$> ./hello.jip Joe -- --dry --show # do not run but show dry run and command
#> ./hello.jip Joe -- submit # submit the script run

The combination of argument parsing and templates allows you to do much more.
Please take a look at the Getting started guide and the templates documentation.

Where to go next

	The Getting started guide

	goes through a couple of examples, explains basic tools and pipeline
generation.

	The Tools and Pipelines chapter

	documents the script and template API and how the execution graph
and be manipulated.

	The Examples chapter

	describes a set of real world examples.

	The Setup and configuration chapter

	explains the JIP installation and configuration options in more detail.

	The JIP command line utilities

	are bundles with the package and allow you to run, submit and manage
your jobs.

Contents

	Setup and configuration
	Dependencies and requirements

	Installation

	Configuration and setup

	Getting started
	Writing tools and pipelines

	Command line arguments and options

	Validation

	Tools and Pipelines
	Tools

	JIP Pipelines

	Inputs, Outputs, and Options

	The stream dispatcher

	The Template system
	Template Filters

	The script context

	Examples
	BWA example pipeline

	Dynamic Validation

	Argument filters and Streams

	Modify the execution environment

	JIP command line utilities
	jip - the master and control command

	jip jobs - list jobs

	jip tools - list available tools

	jip profiles - list configured profiles

	jip bash - bash command wrapper

	jip pipe - pipe command wrapper

	jip run - run jip script

	jip submit - submit jip script

	The JIP API
	Creating pipelines

	Running jobs locally

	Save and submit jobs

	Use the JIP configuration

	The Scanner

	JIP modules and Classes

	Jip FAQ
	API related questions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

Setup and configuration

Dependencies and requirements

JIP does have a bunch dependencies that should be installed with the
system automatically. What is needed are the following libraries:

	SQLAlchemy [http://www.sqlalchemy.org/] is used for the job database
integration

	Jinja2 [http://jinja.pocoo.org/docs/] is the template system that
is used. Note that instead of the default {{ }} separators,
by default, JIP templates use ${ }. You can change the variable
open and close strings in the JIP configuration.

	argparse is used for argument parsing. This is part of the Python
standard library since version 2.7, but will be installed as a
dependency for older python versions.

Note

The JIP job database uses an SQlite back-end, which is part of the
Python standard library since version 2.5, but needs to be enabled
when Python is compiled. Most of the bundled Python installations
come with support for sqlite, but if you compiled your own version
of Python, make sure you have sqlite support. You can check if your
Python installation supports sqlite with the following command:

$> python -c 'import sqlite3'

If the command above does not raise any exception, you have sqlite
support.

The current implementation uses the job database for simple communication. That
requires a way to lock the database file and have it in a location accessible from all nodes in your compute cluster. The default location
is $HOME/.jip/jobs.db, but you can change the path in the JIP
configuration.

For more complex pipeline implementations the SQlite back-end could generate concurrency issues, especially on network shared file systems where the file locking mecanism could not work properly or could not even be available. In order to resolve this problem, the JIP database module also supports a MySQL back-end. In order to use it mysql-python [http://sourceforge.net/projects/mysql-python/] must be installed beforehand.

Installation

The JIP system is mainly implemented in Python and can be installed from either
the JIP GitHub repository [http://github.com/thasso/pyjip] or directly
through pypi.

Install from GitHub

In order to install JIP from the Github repository, you have to check out the
code and run the install script:

$~> git clone https://github.com/thasso/pyjip
$~> cd jip
$~/jip> python setup.py install

This will install JIP system wide, but you need to have administrative
privileges to do so. If you do not have root permissions or you do not want to
install JIP system wide, you can append the –user option to the install
command:

$~/jip> python setup.py install --user

This will install into you home folder.

Note

You might have to update your PATH variable to include
$HOME/.local/bin. This is the default install location for –user mode.

Install from pypi

The pypi Python repository contains tools and libraries written in Python and
provides an easy way to install such packages. An easy way to install a package
from pypi is using the pip package manager. You can install JIP system wide
with pip:

$~> pip install jip

Alternatively, you can also install the JIP into your home folder with pip by
appending the –user option:

$~> pip install jip --user

Configuration and setup

After installation, you should have the jip command line tool available to
interact with the system. This command can be seen as the master and control
command to work with jip tools, pipelines, and jobs from the command line. JIP
comes with a set of JIP command line utilities. Almost all of the
commands at hand will work out of the box, but some might need a little bit of
configuration before you can use them on your system. The JIP configuration
is stored in two location on your system:

	$INSTALL_DIR/jip.json:

	You can put a global configuration just next to the jip executable. This
configuration file will always be loaded and evaluated for all calls to the
command line utilities. In case you use the Python API directly, you
might have to specify the path to the global configuration file explicitly.
To do this, set jip.configuration.install_path to the absolute path
the directory that contains the jip.json before you make any other
calls to the JIP API.

	$JIP_CONFIG:

	You can point to a custom configuration using the JIP_CONFIG
environment variable. If the file exists, it is loaded after the global
configuration but before the configuration in the current users home
directory.

	$HOME/.jip/jip.json:

	In order to provide user-level configuration, you can create a .jip
folder in your $HOME directory and put a jip.json configuration
file there. This file will be evaluated automatically for both the calls to
the command line utilities as well as any calls done using the Python API
directly. The file will extend and overwrite any global configuration.

Here is an example of a JIP configuration file:

{
 "db": "sqlite:///home/thasso/.jip/jobs.db",
 "jip_path": "",
 "jip_modules": [],
 "cluster": "jip.cluster.Slurm",
 "profiles": {
 "default": {
 "queue": "project",
 "time": "3h"
 }
 },
 "templates":{
 "variable_open": "${",
 "variable_close": "}"
 }
}

The configuration can contain the following entries that are used by the
JIP API:

	db

	Database location. The path or URL to connect to the JIP database. The
JIP database is used to store runtime information about jobs submitted
to a compute cluster. By default, jip puts the database into
$HOME/.jip/jobs.db and uses an embedded sqlite database. This setting
can be overwritten at runtime using the JIP_DB environment
variable. Valid URLs for the connection string are:

SQlite paths
rel/path/to/dir/jip.db
/abs/path/to/dir/jip.db
sqlite:///rel/path/to/dir/jip.db
sqlite:////abs/path/to/dir/jip.db
MySQL URLs
mysql://user:password@host/jip
mysql:///jip (uses the user MySQL configuration in ~/.my.cnf)

For MySQL databases, jip assumes that the specified database already exists. No database creation operation is performed.

	jip_path

	Colon separated path or locations for jip tools. You can put a colon
separated list of folder here. All folders in this list will be
searched for tools. You can add paths at runtime using the
JIP_PATH environment variable.

	jip_modules

	List of Python modules. Put a list of module names here to
specify locations of JIP tools that are implemented in a Python module.
For examples:

...
"jip_modules":["my.tools"]
...

With this configuration, JIP will load the my.tools Python module to
search for tools. Please note that my.tools module must be available
on your PYTHONPATH. You can add module dynamically to the
list using the JIP_MODULES environment variable.

	cluster

	name of a class that implements jip.cluster.Cluster. When
used in a cluster environment, the specified class is used to interact
with your grid system on the lower level. See the cluster
configuration documentation and the
jip.cluster module for more information about supported
cluster engines and how you can configure them.

	profiles

	list of profiles that can be used to configure jobs on a cluster

	templates

	configure parts of the template system. Currently, you can change the
separator strings that are used to access the templates variables. For
examples, if you want to switch back to the jinja2 defaults, add the
following configuration block:

"templates":{
 "variable_open": "{{",
 "variable_close": "}}"
}

In addition, other configuration blocks, which are interpreted
by specific module, can be specified. For example, the different cluster implementations can ask
for specific configuration blocks.

Cluster Configuration

The cluster configuration is loaded from your JIP configuration file.
The following base configurations are available. Please refer to the
implementation documentation for details of the configuration parameters for
each grid connectors.

Grid engines

JIP ships with connector implementations for the following grid systems:

For a Slurm cluster:

{
 "cluster": "jip.cluster.Slurm"
}

For a PBS/Torque cluster:

{
 "cluster": "jip.cluster.PBS"
}

For a Gridengine/SGE/OGE cluster:

{
 "cluster": "jip.cluster.SGE",
 "sge" : {
 "threads_pe": "threads"
 }
}

Please note that for SGE, in order to submit multi-threaded jobs, you have to
specify the parallel environment that is configured for threaded jobs.

For a Platform LSF or Openlava cluster:

{
 "cluster": "jip.cluster.LSF"
}

Local scheduler

If you don’t have access to a compute grid or if you want to use JIP on your
local machine to schedule jobs & run them in the background, JIP comes with local scheduler implementations. For this to work, you have to configure
JIP to connect to a server process using the JIP local scheduler
connector in your JIP configuration:

{
 "cluster": "jip.grids.JIP",
 "jip_grid": {
 "port": 5556
 }
}

In addition you have to start the JIP server and keep it running:

$> jip server

This will start a server process that will take care of accepting jobs and
executing them in the background.

Note

The JIP server uses PyZMQ for message passing and you have to make
sure that the library is installed before you can start the server.
You can install PyZMQ with pip:

$> pip install pyzmq

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

Getting started

The getting started guide covers the basic setup and creation of jip tools
as well as using the jip command line utilities to execute and submit your jobs
and pipelines.

Writing tools and pipelines

The smallest unit of execution in jip is called a tool. Tools can be
implemented in various ways and this guide will cover the basic steps necessary
to implement your own tools. With a set of small executables in your disposal,
you can combine these tools to pipelines to build bigger workflows. Before we
start to compose pipeline, lets get started with simple tools.

Tools in jip can currently be implemented in two flavors. Jip script can be
used to implement a tool in your scripting language of choice. In addition to
jip scripts, you can use python module to implement tools using parts of the
jip API. Lets start with a classical example: Hello world.

Hello world

In order to create your first jip script, create a file hello_world.jip with
the following content:

#!/usr/bin/env jip
echo "hello world"

By default, jip script commands are interpreted by bash. Make the file executable
and you can run it:

$> chmod +x hello_world.jip
$> ./hello_world.jip
hello world
$>

If your script files end with the .jip extension, the system can find your
scripts and make them available globally. For this to work, the script file has
to be located in a folder known to the system. These folders can be configured
globally in your jip configuration using using the jip_path. In addition, you can populate the JIP_PATH
environment variable to point to folders that contain jip scripts. For a simple
check if your script is found, you can use the jip tools command, which lists
all the tools detected in the configured search locations:

$> export JIP_PATH=`pwd`
$> jip tools
...
 Name Path
===
hello_world.jip /Users/thasso/code/pyjip/examples/hello_world/hello_world.jip
...

You might noticed that the description of the tool in the table printed by the
jip tools command is empty. You can add a description (and more
documentation) to your tool using an initial comment block at the beginning of
your script. For example, update your hello world script to look something like
this:

#!/usr/bin/env jip
Prints hello world
echo "Hello world"

The first line of your comment is treated as the description of your tool, but
in addition to a single line, you are encouraged to write more. This help is
available to all tools when you run them with the -h options. For example:

$> ./hello_world.jip -h
Prints hello world

As demonstrated in this example, implementing a jip tool using the bash
interpreter is relatively simple. You create a file that ends in .jip and
write your bash script. We encourage you to set the shebang to /usr/bin/env
jip because this allows you to run the script as an executable directly from
the command line, but that is not strictly necessary.

Bash is used as the default interpreter for your jip scripts, but you are not
limited to bash. You can use whatever script interpreter you prefer. In order
to understand how to switch interpreters, you have to understand a little bit
more about jip scripts. A jip script is organized in blocks and there are
three types of blocks available:

	command blocks are used to implement tools and can be executed with any
interpreter specified in the block definition.

	validate blocks allow you to run option and argument validation
outside of the actual execution. We will go into more detail later, but the basic idea behind separation of validation and
execution blocks is to gain the ability to work with compute clusters and
validate tools and pipelines before they are submitted. Please note the
currently, validation blocks have to be written in python.

	setup blocks allow you to execute customizations on the tool instance
itself. These blocks are called when the initial tool is created and
can be used, for example, to add options to the tool. Please note the
currently, setup blocks have to be written in python.

	pipeline blocks are written in python and allow you to compose
pipelines of tools.

By default, code inside a jip script without any explicit command block
definition is treated as code in a bash command block. You can create a block
explicitly using a #%begin <blocktype> statement and end a block with
#%end. For example, if you would like to implement the hello world tool in
perl rather than in bash, The script would look like this:

#!/usr/bin/env jip
Prints hello world using perl

#%begin command perl
use strict;
use warnings;

print "Hello world\n";
#%end

Here we open an explicit command block. Command blocks take single argument
that is used to identify the interpreter.

You could of course set the interpreter to python and write python code to
implement the tool functionality, but there is an alternative way. Tools can be
implemented in python module using the JIP API and decorators.

Command line arguments and options

Up until now, we can create executable tools in various ways, using jip script,
switching interpreters and implementing tools as python functions that are
either executed or that return a script themselves. But we lack the ability to
actually interact with our tools. We need a way to specify options and
arguments to modify and configure the behaviour of our tools. In JIP, there
are two main way to specify arguments, and end up creating
jip.options.Option instances. Options carry all the essential
information of a single option as well as some information relevant when you
build pipelines of tools. More about that later. For now, lets focus on
creation options for our tools and figure out how we can use them in our
scripts or python functions.

JIP scripts use an adapted version of the docopt [http://docopt.org] parser, which allows you to specify your options in a POSIX compliant way within your documentation and access them within your scripts. Lets take a very simple example and extend our hello world scripts and build a little greeting system:

#!/usr/bin/env jip
Send greetings
#
usage:
greeting <name>

echo "Hello ${name}"

In this example, all we have to do to create and access command line parameters
for a tool is to extend its documentation.

We specify a usage section and use POSIX style to specify our parameters. We
use the docopt library (slightly modified) to parse the parameter
specifications. Please take a look [http://docopt.org/] at the docopt page
for full examples and a detailed description of the syntax. But all in all, for
basic command line parameters everything is as expected.

With in the script we can access the parsed parameter values using the ${}
notations. JIP uses jinja2 [http://jinja.pocoo.org/docs/] as template
system, and all jip scripts are passed through the jinja2 engine. There are
just a few things we changed and added to the context. Most importantly, we use
${} notation to identify variables. This provides a slightly “nicer”
integration with bash and feels a little bit more native. In addition, we
configured jinja2 not to replace any unknown variable, which allows you to use
bash environment variables without any problems. Take a look at the
template system for a more detailed description.

Lets look at another example, now from Bio-Informatics, to demonstrate the
possibilities of the templates system and the tool options:

#!/usr/bin/env jip
Wraps around BWA align to align a set of reads
#
Usage:
bwa_align -r <reference> -i <input> [-o <output>]
#
Options:
-r, --reference <reference> The genome reference (fasta file of the genome)
-i, --input <input> The input file
-o, --output <output> Optional output file
[default: stdout]

bwa aln -I -t $JIP_THREADS ${reference} ${input} ${output|arg(">")}

Do not worry if you do not have bwa installed. You don’t need to run the
example to understand whats going on or to play with the example itself. JIP
allows you to perform dry runs of tool and pipeline executions and that what
we are going to use here to explain what we do in the script.

To get an initial impression, run the script like this:

$> ./bwa_alig.jip -r ref.fa -i input.fa -o output.txt -- --show --dry

This will create output similar to the following:

###
| Job - JOB-0 |
+--------------------------------+--+
| Name | Value |
+================================+==+
reference	ref.fa
input	input.fa
output	output.txt
+--------------------------------+--+	
###	
Job states	
+--------------------------------+--------+--+--+	
Name	State
+================================+========+==+==+	
JOB-0	Hold
+--------------------------------+--------+--+--+

Job commands

JOB-0 -- Interpreter: bash Dependencies:
bwa aln -I -t $JIP_THREADS ref.fa /Users/thasso/code/pyjip/examples/bwa/input.fa > /Users/thasso/code/pyjip/examples/bwa/output.txt
###

If the input file input.fa does not exists, JIP will report an error, just
create an empty file or point it to an existing file for the purpose of this
demo.

Now, lets go through what we see and what just happened. First, we use -- in
the command to separate the options passed to the script from options passed to
the jip interpreter. Bot --dry and --show are both passed to the jip
interpreter. The --dry option prints the fist part of the screen. It shows
all the options and their values as well as a table with the current job state.
The --show options cases the interpreter to print the rendered template to
the screen.

In the script, we have given the options with a more detailed list of option
descriptions and default values. Take a look at the output option. First, the
option in wrapped in [], indicating that the option is optional. Second, the
options default value is set to stdout. You can access or specify the default
process streams using stdin, stdout, and stderr. In the template itself,
if specified, all options are referenced using their long option names, i.e.
reference or input rather than r or i. The output options, as said,
defaults to stdout. In this case we do not want to include the output anywhere
in the command. This could be done with if/else statements, but there is a
simpler way using a filter. In this example we use
the arg filter to prefix the output option if it was set.
${output|arg(">")} indicates that the output option should be piped through
the arg filter. The arg filter takes a value and does not print anything if
the value is not specified (or represents a non-printable value like a file
stream, like in this example). If the values is set, the arg filter accepts
optional parameters to add a prefix or a suffix. ${output|arg(">")}
translates to : if output value is specified, prefix it with ‘>’ and print it.
Otherwise don’t print anything.

You might have noticed that if you try to run the jip script and the speciffied
input file does not exists, an error message is printed. On the other hand,
there is no such validation happening for the reference file. The reason for
this is that we did not specify any input or output options explicitly. In such
cases, the script parser searches for options names inptu or output and
sets them as the default I/O options for the script. When a script is validated,
JIP assumes that all input parameters are files and checks for their
existence. In order to get both reference and input parameter treated as
inputs, we have to explicitly specify the input and output parameters:

Inputs:
-r, --reference <reference> The genome reference (fasta file of the genome)
-i, --input <input> The input file
#
Outputs:
-o, --output <output> Optional output file
[default: stdout]

Here, instead of using the general Options block, we split the options into
Inputs and Outputs. Note that in our example, this covers all the available
options, but if there would be more, you could simply add an Options block.
With this setup, also the reference option will be checked for existence.
Alternatively to strictly specifying all input and output options you can also
customize the validation procedure.

Validation

Validation of Tools and Pipelines before execution is important. Especially if
executions are moved to a remote compute cluster. You want to avoid submitting
fail because you had a typo in one of the file names.

Proper validation triggers errors such as wrong file names or missing
parameters early and, more importantly, before the actual submission of the job
to a remote cluster.

Validation in jip script is done with a validate block in your script. Take
the bwa example above. We can add a custom file check for the
reference option like this:

#%begin validate
check_file('reference')
#%end

The validate block in JIP are written in python and within a JIP script a set
of functions is already exposed to simplify certain tasks. Take a look at
the python context for a detailed description of
all the functions and variables that are available in the default context.

You can find more information on tools validation and pre-processing
here.

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

Tools and Pipelines

The essential parts of the JIP system are tools and pipelines. Tools
represent the smallest unit in the system and allow you to implement
independent executable blocks. Pipelines are directed acyclic graphs that
consist of a set of nodes representing tool executions and edges representing
the dependencies between these executions.

Tools

In JIP, tools are small executable units that carry meta information
to describe the actual execution and its options as well as a way to
validate and update the tools’ state.

[image: tool structure]
A single tool consists of the following essential parts. The tools
options are divided into Inputs, Outputs, and Options.
The tool itself consists of an optional validation block and an execution
block. In addition, a tool has a Job association that covers the basic
execution environment.

The simplest form of a tool consist of the following parts:

	Options

	Options are a way to express the tools input and output capabilities and
other options. Inputs are usually files or data streams that are
read by the tool. Outputs, as the name suggests, cover files and
data streams created by a tool. Other Options can also be defined.
Please note that input and output options are treated
specially when a tool is executed.

	Execution block

	A single tool contains one execution block that either executes a
command script or that creates and returns a pipeline. Command scripts
are, by default, implemented in bash but you can switch the
interpreter and write the command in any interpreted language. On the
other hand, an execution block can also create a pipeline which then
will be incorporated into the overall execution graph.

	Init block

	A tool instance can provide an init block that will be called once,
when the tool is loaded. init implementations are not allowed to act
on option values, but, can be used to setup and initialize the tool
instance itself. Use this block, for example, to add dynamic
options to the tool instance. Please note that the
setup blocks have to be implemented in python and there is currently
no way to change the interpreter for those blocks.

	Setup block

	A tool instance can provide a setup block that will be called
before the options are finalized and rendered. The tool options are
set when this block is called and you can use it, for example, to
implement some logic on the option values. When this block is executed,
the options are not yet rendered. That means you are allowed to
set option values to template strings.

	Validation block

	In addition to the actual execution, a tool implementation can
extend its default validation. By default, the system ensures that all
specified input files exists. You can add more checks in the validation
block. Please note that the validation blocks have to be implemented in
python and there is currently no way to change the interpreter for
those blocks.

The validation block also is the place to modify the tools job
environment in case you don’t want to set parameters from the command
line at execution or submission time.

JIP currently supports two ways to implement tools and pipelines. JIP
scripts and python modules with decorators.

Scripts

One way to implement your tools and pipelines is using JIP scripts. The
system can be executed as an interpreter, hence you can start your scripts
with #!/usr/bin/env jip, make them executable and run them directly. The
interpreter detects -- in the command line and uses it to separate
arguments. Everything after the -- is passed as an argument to the
JIP interpreter rather than your tool.

Basic JIP scripts can be used to implement both tools & pipeline, and they provide
a way to define the JIP options directly in the script. A script usually
contains the following blocks:

	Documentation, help and options

	A jip script starts with a documentation and help block that
contains also the option definition. We use the great docopt [http://docopt.org] library to parse your option definitions.

	Blocks for init, setup, validate and execution

	You can open a block in a JIP script using #%begin <blocktype>
<args> and close it with #%end. Nested blocks are currently
not supported.

Documentation, help, and options

An essential part of any script, independent of the context, is documentation
and command line options. Unfortunately, this is often neglected and you end
up with a set of script files that you understand while you write and use
them first, but if you have to come back to those things after some time,
you are often lost. The easiest way is to try to document both your script
and the command line options, then it takes in a meaningful way. The downside
of this is that your initial small script that consists of just a few lines
of code will get filled with a lot of code responsible for parsing your command line
options.

The docopt library tries to tackle the problem and is able to parse option
definitions that are given in a POSIX compliant way. JIP makes heavy use
of this library and allows you to specify the option definition in a POSIX
style way and then to extract the available meta-information. Here is one of the
most simple scripts you can write:

#!/usr/bin/env jip
Send greetings
#
usage:
greeting <name>

echo "Hello ${name}"

Make the script executable, chmod +x greetings.jip and run it:

$> ./greetings.jip Joe
Hello Joe

You can see that you have access to the parsed options directly in your script.
In addition, the -h|--help option is in place and will print the
documentation.

We decided to use a slightly modified version of the docopt [http://docopt.org] library and to force you to write documentation, at least
for your options. It might sound harsh and it is a hard constrain, but in order
to write reusable tools, you have to provide some sort of definition of your
tools options. It turns out, writing options is rather straight
forward, you get documentation for your tools and the JIP system can extract
the information about your tools options. Here is a larger example
where we actually define different kinds of options:

#!/usr/bin/env jip
Wow, accessing arguments without parsing them is great!
#
Usage:
my_tool -i <input>... [-o <output>] [-b]
#
Inputs:
-i, --input <input> List of input files
#
Outputs:
-o, --output <output> The output file
[default: stdout]
#
Options:
-b, --boolean A boolean flag

echo "INPUT: ${input}"
echo "OUTPUT: ${output}"
echo "BOOLEAN? ${boolean|arg("yes")|else("no")}"

A single JIP tool always has a set of options (see
Options for the underlying API). The options are divided
into three groups:

	Inputs

	Input options usually are options that take a file or a list of files.
These files, if specified, have to be present at execution time.

	Outputs

	Output options are all options that define files that are created by
a tool run. These are of particular importance when it comes to
job failures and cleanups. In addition, you might not always be able
to expose all your outputs through the command line interfaces.
For example, your tool might just take a prefix and then create a
set of files based on the specified prefix. These cases can be
handled using dynamic options.

	Options

	All options that are not Inputs or Outputs fall into this
group.

Note

Note that you have to indicate the ability of a tool to read form
stdin or write to stdout explicitly. For this, set the
options default value to stdin or stdout respectively.

When options are used to build pipelines, it is important to indicate a tools
default input and output options. This is done using the definition order. In
case you have more than one input or output option, the first one in the list
is marked as the default input/output. Options that accept streams always take
precedence and are always defined as the default options for input or output.

Execution blocks

JIP script must contain exactly one, non-empty, execution block. There are
two types of execution blocks:

	command block (#%begin command [<interpreter>])

	Command blocks execute their block content with a specified
interpreter. The block content is a JIP template and you have
access to the full context. The command block takes a single
argument, which defines the interpreter that will be used to run
the blocks content. The default interpreter is bash.

	pipeline block (#%begin pipeline)

	Pipeline blocks are written in python and allow you to define a
pipeline graph that will then be expanded and executed.

All execution blocks can be explicitly opened with #%begin command or
#%begin pipeline and can be closed by #%end. If no block is opened
explicitly, a bash command block is created implicitly.

Init blocks

A script or tool definition can specify a init block in order to create
more options that are registered with the tool. Please note that the init
blocks are evaluated once, just after the tool is created. That means that the
option values are not yet set and you can not implement any logical decisions
based on the option values. You can, however, use the init block to
add more options to a tool. For example:

#%begin init
add_output('output', '${input|name|ext}.out')
#%end

Here we add a new output option and set its value as a template that uses the
tools input option. This is valid as the options value will be evaluated
later, when the input option is set.

Setup blocks

Setup blocks are executed before the options values are rendered and can be
used to change options based on their values. Because template strings are
not yet rendered, you can set the template strings as values. For example:

#%begin setup
if options['threads'].get(int) > 1:
 options['parallel_mode'] = True
#%end

Validation blocks

In addition to the command execution or pipeline definition, a script can
contain a single validate block:

#%begin validate
check a file
check_file('input')

import datetime
day = datetime.date.today().strftime("%A")
if day == 'Monday':
 validation_error("I don't like Mondays")
#%end

All validation blocks are written in python and the context exposes a set of helper functions to perform checks on files
and raises arbitrary validation errors. See Validation for
more about tool validation.

The execution environment

A tool implementation carries its own job environment. This options let you to
modify on a per-tool bases are covered in the Profile
class. Job profiles can also be applied outside of the tool implementation,
when you submit or execute the tool or pipeline. Please note that specifying
the job options is the preferred way. This enhances portability and flexibility
and allows you as a user of a tool to modify its execution environment without
touching the tool implementation. The documentation contains an example that covers the aspects of how you can modify the jobs
environment both in the tool implementation as well as on the command line.

Modules

In addition to JIP scripts, tools and pipeline can also be implemented in
Python modules directly, using the JIP API and the available decorators.

Tools can be loaded from Python modules directly. Here is how you
could implement a simple hello world example as a Python function. Create a
Python module hello_world.py and add the following content:

#!/usr/bin/env python
from jip import *

@pytool()
def hello_world():
 """Prints hello world in a python module"""
 print "Hello world"

All we have to do here is to decorate a function with the
jip.tools.pytool decorator exported in the jip package. This
allows us to treat a single Python function as a tool implementation. In order
to integrate the module, we have to either configure the jip_modules jip configuration or export the JIP_MODULES
environment variable. For example:

$> JIP_MODULES=hello_world.py jip tools

Implementing tools in Python modules allows you to group and organize your
tools using standard Python modules, but you are no longer able to have them
exposed as single commands to your shell. You have to use the jip run command to execute a tool implemented in Python modules. To run
the “hello world” example, try the following:

$> JIP_MODULES=hello_world.py jip run hello_world

If you use pPthon modules to organize your tools, you might encounter
situations where it would be much easier just to execute a single line of bash
rather than implementing the full execution in Python. The latter can by quiet
tricky and a lot of things from the Python standard library might get
involved. There is however a simpler way where you can use a Python function
(or class, see decorators) to create an interpreted script.
For this purpose, jip contains the jip.tools.tool decorator. You
can decorate a function with @tool() and return a template string that is
then treated in the same way jip script content would be interpreted. Your
function can either return a single string, which will be interpreted using
bash, or a tuple where you specify first the interpreter and then the actual
script template. Please take a look at the following examples:

@tool()
def hello_world():
 return "echo 'hello world'"

@tool()
def hello_perl():
 return "perl", """
 use strict;
 print "Hello World\n"
 """

There are more decorators that you can use to annotate
functions and classes to create pipeline and tools.

Tool validation and pre-processing

Validation is an essential step in all pipeline executions. You would want to fail
as early as possible and to make sure all mandatory options are set.

JIP tools and pipeline come with a default validation mechanism that is
triggered while building pipelines and before the execution. By default,
all input options of a tool or pipeline are validated and it is ensured
that the referenced file exists or that the file will be created by another
tool in a pipeline setup. In addition, all mandatory options are checked and
errors raise if a mandatory option is not set.

You can also customize the process of validation. In JIP scripts, you can
add a validate block like this:

#%begin validate
...
#%end

Within the validate block, which is implemented in python, you have full
access to the scripts’ context <python_context>, for example, to use the
check_file() function. If you want to
fail your validation manually, you have to raise an
ValidationError. The easies way to do this is via the
Python context’ validation_error()
function. Specify an error message and
the exaception will be raised. For example:

#%begin validate
...
if day == "Monday":
 validation_error("I refuse to work on Mondays")
...
#%end

Since that the validation blocks run before the actual execution or submission of
the pipeline, you can also use the validation block as a general pre-processor
for your tool. This can be handy in various circumstances, but keep in mind
that the idea is not to do the tools job while validating it. Keep your
validation methods small and fast so speed up pipeline generation.

Within your init and setup blocks, you are allowed to modify the tool
options. One common pattern is to add additional hidden output options.
Assume for example you have a simple tool that take a prefix parameter and a
count and then creates a number of files:

#!/usr/bin/env jip
Touch a number of files with a common prefix
#
usage:
touch -p <prefix> -c <count>

#%begin command
for x in {1..${c}}; do
 touch ${p}_$x
done

The tool will do the right job, but the files generated by the tool
(<prefix>_<count>) will not be registered as output files. That means they
can not be handled in case of a failure or restart, and the tool can not easily
be wired up within a pipeline setup as no outputs are defined. On the other
hand, we can also not specify the output option within the scripts header
directly. The values of the output file options depends on what will be
specified for the prefix and counter options. The way around the
problem is to use the init and setup blocks, register the
output option dynamically, and then update its value based on the configured
options:

#!/usr/bin/env jip
Touch a number of files with a common prefix
#
usage:
touch --prefix <prefix> --count <count>

#%begin init
add_output('output')
#%end

#%begin setup
options['output'].set(["%s_%s" % (p, i) for i in range(1, count.get(int) + 1)])
#%end

#%begin command
for x in ${output}; do
 touch $x
done

What happens here is that we register a new output option using the
contexts add_output() function,
pre-calculate the names of the files and set them as values. Note that you can
pass converter functions like, str, int, or float to the options
jip.options.Option.get() method to convert the value.

In fact, now that we have the options specified, we can also use it in the
command block and replace the bash sequence generation. This way, there is
only one place where the names of the output files are generated. That means
only one place exists where we have to look for bugs or to change things.

Note

You can use the validation block for pre-processing, but keep in mind
that the validation block will be called more than once. That
means you have to be careful to implement your pre-processing in a
way that it can be executed multiple times and is not too time
consuming.

Decorators

The jip.tools module provides a set of decorators that can be
applied to function and classes in order to transform the decorated
instance into a jip tool or pipeline. The following decorators are available:

	@tool

	Apply this to classes and functions that return a string (for
functions) or implement a get_command method that returns a string
(for classes). The returned string is interpreted as a jip script
template. The function can also return a tuple (interpreter,
template) to indicate an interpreter other than bash.

	@pytool

	Apply this to functions or classes. Decorated functions are executed as
jip tools, decorated classes are expected to implement a run method
that is then executed as a tool.

	@pipeline

	Apply this to functions or classes. Functions must return an
jip.pipelines.Pipeline instance or a pipeline script. Classes
must implement a pipeline function that returns a
pipeline instance or a pipeline script.

Function annotation is the most simple and also the most limited way to
implement a JIP tool. You do not have a way to customize the tool validation.
That said, implementing jip tools as Python functions is straight forward and
easy to do:

@pytool()
def greetings():
 print "Greetings fellow Pythoniast"

In this case the tool execution itself is implemented in Python. Alternatively,
you can also use the @tool annotation and return a template string or
a tuple to specify the interpreter and the template string:

@tool()
def greetings():
 return "bash", "echo 'Greetings bash user'"

In case you use @tool, you can access the tools
jip.tools.Tool.options as in any JIP script from the context. On the other hand, if you use the @pytool decorator and
implement a Python function that is executed as a tool directly, you can
access the tool instance as a parameter:

@pytool()
def greeting(self):
 """
 usage:
 greeting <name>
 """
 assert isinstance(self, jip.tools.Tool)
 print "Greetings", self.options['name'].get()

Here, self is the actual tool instance created by the decorator and
populated with the options.

An alternative approach, and as well suitable when you deal with more complex tools, is
to implement the tool not as a function but as a class. This enables you to
add more than just the run or get_command functions, but also provide
a validate implementation and even customize other parts of the tool
implementation. Here is the python implementation of the greetings tool:

@pytool()
class greetings(object):
 """
 usage:
 greetings <name>
 """
 def validate(self):
 if self.options['name'] == 'Joe':
 self.validation_error("Sorry Joe, I don't like your shoes.")

 def run(self):
 # we are not a tool instance
 assert isinstance(self, greetings)
 # but we can access it
 assert hasattr(self, 'tool_instance')

 # and we have the helpers directly available
 assert hasattr(self, 'args')
 assert hasattr(self, 'options')
 assert hasattr(self, 'check_file')
 assert hasattr(self, 'ensure')
 assert hasattr(self, 'validation_error')
 print "Greetings", self.args['name']

As you can see from the example above, you can override most of the functions
provided by the tool implementation. If you use a class based approach, a
few helper functions and variable are injected into your custom class. You
always have access to:

	args

	the option values in a read-only dictionary

	options

	the tool options

	check_file

	the options check_file() function to
quickly check file parameters

	validation_error

	access the tools validation_error() function
to be able to raise error quickly

Please take a look at the documentation of the @tool
decorator. There are options you can pass to the decorator to customize how
your class is converted to a tool and change, for example, the names of
functions that are to map between your implementation and the
Tool class.

JIP Pipelines

Node operators

Pipeline nodes support a set of operators that simplify some operations on the
nodes and the graph structure. The following operators are supported by
pipeline Node instances:

	|

	The or or pipe operator behaves similar to the common behaviour in
your bash shell. The default output of the left sides’ node (see
jip.options.Option.get_default_output()) is connected the
default input of the right sides’ node. A new edge is added to the
pipeline graph making the right side dependent to the left side, and,
if both nodes support streaming, a stream link is established.

	>

	The greater than operator can be used set the output option
of the left side to the right side value. The right hand side can be a
string, representing a file name, or another node, or another option.
If the right side is another node or another nodes option, a
dependency edge will also be created.

	<

	The less than operator can be used set the input option
of the left side to the right side value. The right hand side can be a
string, representing a file name, or another node, or another option.
If the right side is another node or another nodes option, a
dependency edge will also be created.

	>>

	The right shift operator creates a dependency between the left side
and the right side, making the left side executed before the right
side.

	<<

	The left shift operator creates a dependency between the left side
and the right side, making the right side executed before the left
side.

	+

	The plus operator creates a group of jobs. All operations on the
group node are now delegated to all members of the group.

	-

	The minus operator creates a group of sequentially executed jobs that
are send as a single job to the compute cluster.

Inputs, Outputs, and Options

The previous chapter already explained how you can define tool options and use
them in your tool implementations. The options are divided in input, output
and general options. All options can be used to create links (dependencies)
between tool execution in a pipeline context, but intpu and output options
are treated specially.

Input options are automatically validated for each tool. The system will raise
an error if you set an input option to a non-existing file.

Output options and files that are referenced as outputs of tools are used
to detect the state of a tool and its execution, especially when something
goes wrong. The first indicator for a jobs state, say running or failed,
is the job database. Alternatively, if the job is no longer marked as running
on your compute cluster, the output files of a job are checked and the job
is marked as completed if all outputs exists. That would mean that a job
that failed in the middle of its run might leave files on disk and might be
marked as completed accidentally. To prevent this, a JIP run deletes all
output of failed jobs automatically. If you submit your jobs through the
jip submit command line tool or run it with jip run, you can prevent
deletion of files using the --keep flag. In general, you are encouraged not
to use keep though. If a job fails, its output will be removed and this
will allow you to fix the problem and to restart your job without thinking about
orphan files.

The stream dispatcher

If your tool implementation can handle streamed input and output, the JIP
pipeline system allows dynamic stream dispatching.

[image: _images/stream_dispatch.png]
Dispatch the output of the Producer to two Consumers and an output
file. All three nodes on the right side will receive the same content. This
will also wrap all jobs into a single job group that is executed in
parallel.

The dispatcher will automatically delegate content from a producer node to
a number of consumers. A valid consumer is either a file or another tool
that accepts input form the stdin stream. This allows you to construct
parallel running pipelines very similar to what you can do with the bash
tee command. For example:

$> echo "Hello World" | (tee > producer_out.txt | (tee >(wc -w) | wc -l))

Here, the echo command is the producer whose output is piped to the
producer_out.txt file as well as to a word and a line count.

To build the same pipeline in JIP, you have a couple of options. We can
start with a rough, one-to-one translation:

#!/usr/bin/env jip
#%begin pipeline
(bash('echo "Hello World"') > 'producer_out.txt') | (bash('wc -l') + bash('wc -w'))

This gives the same result. Try to run in and push it through a dry run (use
jip run --dry or ./myscript.jip -- --dry) to see the pipeline
structure. The hierarchy contains all three jobs, but only a single job will be
send and executed on your compute cluster. In this example, we use the
pipeline node operators to delegate the output
from our producer to the output file and then further to a group of
two jobs of the word and the line counts. A variation of the example above
would be to explicitly specify the producers output:

bash('echo "Hello World"'), output='producer_out.txt') | (bash('wc -l') + bash('wc -w'))

Both variations are similar in nature and so the jobs. But, both of them do
not necessarily improve readability or maintainability of the script. They do
the job, but you might not consider the script nice.

An alternative implementation of the same pipeline might look like this:

#!/usr/bin/env jip
#%begin pipeline
producer = bash('echo "Hello World"', output='producer_out.txt')
word_count = bash("wc -w", input=producer)
line_count = bash("wc -l", input=producer)
producer | (word_count + line_count)

Granted, this is no longer a single line. But the goal is also not to use the
least number of keystrokes (if you are interested in that, start playing
vimgolf [http://vimgolf.com/]).

The script above allows more flexibility and you will be able to update
the pipeline faster. The key line with respect to the streaming dispatcher is
the last line of the script. This line enables the stream dispatching. If
you remove it, your pipeline will still work, but the producer and the consumer
jobs will no longer run in parallel. Without the last line, first the producer
will be executed and its output will be written to producer_out.txt. Then
the two consumer jobs will execute (potentially in parallel) and operate on the
output file. If you decide that you don’t need the producer_out.txt file, you
can simply remove it from the producer definition. In that case you will end up
again with a pipeline structure that executes a single job and all data will be
streamed. In this case you don’t even need the last line, the streaming
dependency is implicit.

Note

Another nice feature of the last version of the pipeline is that
auto-naming kicks in and your pipeline jobs will be named according
to the variable names you used in your script:

####################
| Job hierarchy |
####################
producer
├─word_count
└─line_count
####################

The Template system

JIP uses jinja2 [http://jinja.pocoo.org/docs/] as template
system, and all jip scripts are passed through the jinja2 engine. There are
just a few things we changed and added to the context. Most importantly, we use
${} notation to identify variables. This provides a slightly “nicer”
integration with bash and feels a little bit more native. In addition, we
configured jinja2 not to replace any unknown variable, which allows you to use
bash environment variables without any problems.

Template Filters

Template filters can be a very powerful tool to simplify processing users
input and to reduce the number of if/else statements in templates.
For example:

get the parent folder name of a file
and prefix it with '1_'
parent = ${myfile|parent|name|pre('1_')}

get the base name of a file and remove the file extension
file_name = ${myfile|name|ext}

print the boolean option '-e, --enable' as -e=yes if the
option is true and specified by the user
some_tools ${enable|arg(suffix='=yes')}

say 'output' can be stdout, redirect to a file only if
the user specified a file name, otherwise nothing
will be put into the template, hence output goes to
stdout
... ${output|arg(">")}

translate an options -i, --input one to one into the template
if it was specified. This yields: mytool -i input.txt
mytool ${input|arg}

The following filters are currently available:

	arg

	The argument filter applies to options that have a value
specified and whose value is not False. The arg filter without any
arguments prefixes the options with its original short/long option name.
You can specify a prefix or a suffix to change this behaviour or to
change to option name. For example ${output|arg} will return -o
outfile assuming that the output option has a short form of -o and the
value was set to outfile. You can change the prefix by specifying the
first argument, for example, ${output|arg(">")} will print >outfile.
Suffixes can also be specified, i.e., ${output|arg(suffix=";")}

	ext

	The extension filter cuts away file name extension and can
also be applied multiple times. Assume your output options is set to
my.file.txt. Using ${output|ext} prints my.file while
${output|ext|ext} prints my. The ext filter cuts away the
rightmost extension by default. You can however set the all option
to True. This will cause all file extensions to be removed. For
example, my.file.txt passed through ${output|ext(all=True)} will
print my.

	suf

	Takes a single argument and adds it as a suffix to the option value

	pre

	Takes a single argument and adds it as a prefix to the option value

	name

	Returns the basename of a file

	abs

	Returns the absolute path of a file. If no argument is specified, and
the rendered value is an option instance, the absolute path is
calculated relative to the tool jobs working directory. Otherwise
the current working directory is used as a base. You can specify a
base folder as an optional argument to the filter.

	parent

	Return the name of the parent directory of a given file path

	re

	Takes two arguments for search and replace. The search argument
can be a regular expression

	else

	Takes a single argument and outputs it if the passed in value is
either a file stream or it evaluates to False.

Note

All input and output files paths are translated to absolute paths
in JIP. In order just to get the name of a file, use the name
filter.

The JIP repository contains an example [https://github.com/thasso/pyjip/blob/develop/examples/template_vars.jip]
that demonstrates the usage of the filters:

#!/usr/bin/env jip
Template filter examples
#
usage:
template_vars.jip -i <input> [-o <output>] [-b]
#
Options:
-i, --input <input> A single input file
-o, --output <output> Output file
[default: stdout]
-b, --boolean A boolean option

echo "==="
echo "Raw values are printed as they are, except"
echo "stream and boolean options."
echo ""
echo "RAW INPUT : ${input}"
echo "RAW OUTPUT : ${output}"
echo "RAW BOOLEAN : ${boolean}"
echo "==="

echo "==="
echo "The 'arg' filter without any argument"
echo "prefixs the value with its option if"
echo "the value is not a stream or it evaluates to"
echo "true."
echo ""
echo "RAW INPUT : ${input|arg}"
echo "RAW OUTPUT : ${output|arg}"
echo "RAW BOOLEAN : ${boolean|arg}"
echo "==="

echo "==="
echo "The 'arg' filter with arguments can be"
echo "used to add custom prefixes and suffixes"
echo "to the value is not a stream or evaluates"
echo "to true."
echo ""
echo "RAW INPUT : ${input|arg('--prefix ', ';suffix')}"
echo "RAW OUTPUT : ${output|arg('>')}"
echo "RAW BOOLEAN : ${boolean|arg('--yes')}"
echo "==="

echo "==="
echo "The 'pre' and 'suf' filter can also be"
echo "used to add a prefix or a suffix."
echo ""
echo "RAW INPUT : ${input|pre('--prefix ')|suf(';suffix')}"
echo "RAW OUTPUT : ${output|pre('>')}"
echo "RAW BOOLEAN : ${boolean|suf('yes')}"
echo "==="

echo "==="
echo "The 'name' filter returns the base name"
echo "of a file or directory"
echo ""
echo "RAW INPUT : ${input|name}"
echo "RAW OUTPUT : ${output|name}"
echo "RAW BOOLEAN : ${boolean|name}"
echo "==="

echo "==="
echo "The 'parent' filter returns the path to"
echo "the parent folder of a file or directory"
echo ""
echo "RAW INPUT : ${input|parent}"
echo "RAW OUTPUT : ${output|parent}"
echo "RAW BOOLEAN : ${boolean|parent}"
echo "==="

echo "==="
echo "The 'ext' filter cuts away the last file"
echo "extension. By default, the extension is"
echo "detected by '.', but you can specify a"
echo "custom split character"
echo ""
echo "RAW INPUT : ${input|ext}"
echo "RAW OUTPUT : ${output|ext('_')}"
echo "RAW BOOLEAN : ${boolean|ext}"
echo "==="

echo "==="
echo "The 'else' filter can be used to insert a"
echo "string in case the value evaluates to "
echo "a stream or false."
echo ""
echo "RAW INPUT : ${input|else('-')}"
echo "RAW OUTPUT : ${output|else('default')}"
echo "RAW BOOLEAN : ${boolean|else('--no')}"
echo "==="

echo "==="
echo "The 're' filter can be used for search"
echo "and replace on the value. Regular"
echo "expressions are supported."
echo ""
echo "RAW INPUT : ${input|re('setup', 'replaced')}"
echo "RAW OUTPUT : ${output|re('.py$', '.txt')}"
echo "RAW BOOLEAN : ${boolean|re('no', 'effect')}"
echo "==="

Option translation

The template context offers access to the options, which can be used for
a quick one to one translation of your input parameter in a command template.
For example:

#!/usr/bin/env jip
The GEM Indexer tool

Usage:
 gem_index -i <genome> [-o <genome_index>] [-t <threads>] [--no-hash]

Options:
 --help Show this help message
 -o, --output-dir <output_dir> The folder where the output GEM
 index is created
 -t, --threads <threads> The number of execution threads
 [default: 1]
 --no-hash Do not produce the hash file
 [default: false]

Inputs:
 -i, --input <genome> The fasta file for the genome
"""
gemtools index ${options()}

Here, all specified options will be rendered after gemtools index. This
only applies to non-hidden options that have a long or a short name. That
means, if you want dynamically created options to be rendered, you have to
set the long or short flags and make them non-hidden:

add_output("output", short='-o', hidden=False)

The script context

Within a jip script, within template blocks, and in Python blocks like
validate, setup, init, or pipeline, a set of functions is exposed to
simplify certain tasks that have to be done quiet often, for example, checking
for the existence of files. The following functions and variables are available
without any additional import statements:

	tool holds a reference to the current tool or pipeline

	args args is a read-only dictionary of the option values

	opts holds a reference to the tool/pipeline
jip.options.Options instance. This can be used like a
dictionary to access the raw options. Note that you will not get the
values directly but an instance of jip.options.Option. If you
want to get the value, try opts['output'].get().

	_ctx a named tuple that allows read-only access to the
current script context.

	__file__ contains the path to the script file

	pwd string with the current working directory

	basename pythons os.path.basename()

	dirname pythons os.path.dirname()

	abspath pythons os.path.abspath()

	exists pythons os.path.exists(). Please note that you might
want to take a look at the
check_file() function exposed in the
context or jip.options.Option.check_file(). Both will check for
the existence of a file, but in case the tool is used in a pipeline, the
check will only happen if the option is not passed in as a dependency,
in which case the file might simply not exist yet because the job that
the option depends on was not executed yet.

	r is an alias to the render_template() function

In addition, the following functions are available:

	
PythonBlockUtils.check_file(name)

	Checks for the existence of a file referenced by an options.

Please note that this doe not take a file name, but the name
of an option. This function is preferred over a simple check
using os.path.exists() because it also checks for job dependencies.
This is important because a mandatory file might not yet exist
within the context of a pipeline, but it will be created at runtime
in a previous step.

	Parameters:	name – the options name

	Returns:	True if the file exists or the file is created by another
job that will run before this options job is executed.

	Return type:	boolean

	
PythonBlockUtils.validation_error(message, *args)

	Quickly raise a validation error with a custom message.

This function simply raises a ValidationError. You can use it
in a custom validation implementation to quickly fail the validation

	Parameters:	
	message – the message

	args – argument interpolated into the message

	Raises ValidationError:

		always

	
PythonBlockUtils.run(_name, **kwargs)

	Searches for a tool with the specified name and adds it as a
new Node to the current pipeline.
All specified keyword argument are passed as option values to
the tool.

Delegates to the pipelines jip.pipelines.Pipeline.run()
method.

	Parameters:	
	_name (string) – the name of the tool

	kwargs – additional argument passed to the tool as options

	Returns:	a new node that executes the specified tool and is added
to the current pipeline

	Return type:	jip.pipelines.Node

	
PythonBlockUtils.bash(command, **kwargs)

	Create a bash job that executes a bash command.

This us a fast way to build pipelines that execute shell commands. The
functions wraps the given command string in the bash tool that
is defined with input, output, and outfile. Input and
output default to stdin and stdout. Note that you can access your
local context within the command string. Take for example the following
pipeline script:

name = "Joe"
bash("echo 'Hello ${name}'")

This will work as expected. The command template can access local
variables. Please keep in mind that the tools context takes precedence
over the script context. That means that:

input="myfile.txt"
bash("wc -l ${input}")

in this example, the command wc -l will be rendered and wait for
input on stdin. The bash command has an input option and that takes
precedence before the globally defined input variable. This is true
for input, output, and outfile, even if they are not
explicitly set.
You can however access variables defined in the global context using
the _ctx:

input="myfile.txt"
bash("wc -l ${_ctx.input}")

will indeed render and execute wc -l myfile.txt.

	Parameters:	
	command (string) – the bash command to execute

	kwargs – arguments passed into the context used to render the
bash command. input, output, and outfile are
passed as options to the bash tool that is used to
run the command

	Returns:	a new pipeline node that represents the bash job

	Return type:	jip.pipelines.Node

	
PythonBlockUtils.job(*args, **kwargs)

	Create and returns a new Job.

The job instance can be used to customize the execution environment
for the next job. For example:

job("Test", threads=2).run('mytool', ...)

This is a typical usage in a pipeline context, where a new job
environment is created and then applied to a new ‘mytool’ pipeline
node.

	Parameters:	
	args – job arguments

	kwargs – job keyword arguments

	Returns:	a new job instance

	Return type:	jip.pipelines.Job

	
PythonBlockUtils.name(name)

	Set the runtime name of a pipeline.
The runtime name of the pipeline is stored in the database and is
used as a general identifier for a pipeline run.

Note that this set the name of the pipeline if used in a pipeline
context, otherwise it set the name of the tool/job.
Within a pipeline context, you can be changed using a job():

job("my job").run(...)

or after the node was created:

myrun = run(...)
myrun.job.name = “my job”

	Parameters:	name (string) – the name of the pipeline

	
PythonBlockUtils.set(name, value)

	Set an options value.

	Parameters:	
	name (string) – the options name

	value – the new value

	
Options.add_output(name, value=None, nargs=None, hidden=True, **kwargs)

	Add additional, hidden, output option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
Options.add_input(name, value=None, nargs=None, hidden=True, **kwargs)

	Add additional, hidden, input option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
Options.add_option(name, value=None, nargs=None, hidden=True, type='option', **kwargs)

	Add additional, hidden, option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
static templates.render_template(template, **kwargs)

	Render a template using the given keyword arguments as context

	Parameters:	
	template (string) – the template string

	kwargs – the context

Injected functions

If you use a class-based approach and the decorators to
implement your tools, the following functions and attributes are injected into
your class if they do not conflict with a local function or attribute:

	options

	Reference to your tools Options instance

	opts

	An alias for options

	args

	Read-only dictionary of the option values

	ensure

	Helper function that simplifies raising validation errors.

	check_file

	The check_file helper to check for existence of files referenced
by an option

	validation_error

	quickly raises a validation error

	name

	a function to set your tool or pipeline run-time name

	add_output

	add an output option

	add_input

	add an input option

	add_option

	add a general option

	render_template

	render a template string

	r

	an alias for render_template

In addition, all tool options are injected as class attributes as long as they
do not conflict with an existing property.

This allows you to quickly access the functions and properties in your class-based implementations. For example:

@tool('bwa_index')
class BwaIndex():
 """\
 Run the BWA indexer on a given reference genome

 Usage:
 bwa_index -r <reference>

 Inputs:
 -r, --reference The reference
 """
 def init(self):
 self.add_output('output', '${reference}.bwt')

 def get_command(self):
 return 'bwa index ${reference}'

Here we access the reference option and the add_output function as
class attributes directly.

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

Examples

This chapter covers a set of practical examples that demonstrate certain parts
of the JIP system.

The example described here, and more, can be found in the JIP GitHub
repository [https://github.com/thasso/pyjip/tree/develop/examples].

	BWA example pipeline
	Single script implementation

	Python module implementation

	Dynamic Validation

	Argument filters and Streams
	Other interpreters

	Argument filtering

	Dispatching streams

	Modify the execution environment
	The Profile

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	Examples

BWA example pipeline

A similar system to JIP is bpipe [https://code.google.com/p/bpipe/]. It’s
documentation contains an example of how to translate an existing shell script
that runs a BWA mapping pipeline.
Here, we start out with the same initial shell script and translate it into a
JIP pipeline with a couple of different ways. This will demonstrate how you can
build pipeline from ground up, starting with a single file and then
modularizing the components for resuability.

Note

In order to actually run the pipeline, you need to have bwa and
samtools installed, but you can run through the example even
without those tools. Running the pipeline in dry mode will show
you how the components are connected and which commands will be
executed.

We start out with the following shell script:

#!/bin/bash
#
initial example of a pipeline script

bwa index reference.fa
bwa aln -I -t 8 reference.fa s_1.txt > out.sai
bwa samse reference.fa out.sai s_1.txt > out.sam

samtools view -bSu out.sam | samtools sort - out.sorted

java -Xmx1g -jar /apps/PICARD/1.95/MarkDuplicates.jar \
 MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000\
 METRICS_FILE=out.metrics \
 REMOVE_DUPLICATES=true \
 ASSUME_SORTED=true \
 VALIDATION_STRINGENCY=LENIENT \
 INPUT=out.sorted.bam \
 OUTPUT=out.dedupe.bam

samtools index out.dedupe.bam

samtools mpileup -uf reference.fa out.dedupe.bam | /apps/SAMTOOLS/0.1.19/bin/bcftools view -bvcg - > out.bcf

The scripts’ job is to take genomic reference (reference.fa) and an input
file (s_1.txt) and output a pileup (out.bcf). The pipeline goes
through the following stages:

	Create a BWA index in the genomic reference

	Align the reads in the input file against the genomic reference

	Convert the alignment into a .sam file

	Convert the .sam file into a .bam file and sort it

	Detect and remove duplicates

	Index the results

	Create the pileup and convert it into a .bcf file

Note that steps 4 and 7 consist of pipes and in fact each contain 2 steps.

Within JIP there are a couple of ways to implement the same pipeline. Which way
to choose depends on the usage of the pipeline and its components. For a one
off execution, it might be sufficient to create a single JIP pipeline that
implements the same functionality. If, on the other hand, you plan to build more
pipelines, you might want to extract out some or all of the steps involved and
create smaller, reusable, components.

Single script implementation

Let’s start with a one-to-one translation of the bash script.

#!/usr/bin/env jip
#%begin pipeline
ref = bash('bwa index reference.fa')
align = bash('bwa aln -I -t 8 reference.fa reads.txt > out.sai')
sam = bash('bwa samse reference.fa out.sai reads.txt > out.sam')
bam = bash('samtools view -bSu out.sam | samtools sort - out.sorted')
dups = bash('''
java -Xmx1g -jar /apps/PICARD/1.95/MarkDuplicates.jar \
 MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000\
 METRICS_FILE=out.metrics \
 REMOVE_DUPLICATES=true \
 ASSUME_SORTED=true \
 VALIDATION_STRINGENCY=LENIENT \
 INPUT=out.sorted.bam \
 OUTPUT=out.dedupe.bam
''')
index = bash('samtools index out.dedupe.bam')
pileup = bash('samtools mpileup -uf reference.fa out.dedupe.bam | /apps/SAMTOOLS/0.1.19/bin/bcftools view -bvcg - > out.bcf')

ref >> align >> sam >> bam >> dups >> index >> pileup

This is the same pipeline executing the same processes in the same order, this
time implemented as a JIP pipeline. How it works: we wrap all the commands
using the bash tool that ships with JIP and is exposed in the
pipeline context. Then we have to add one line, the
last one in this script, to specify the dependencies and therefore the order of
execution (see pipeline operator). You can take a
look at the pipeline, or even start it (if you have the tools in place). The job
hierarchy printed by a dry run looks like this:

$> ./initial_bwa.jip -- --dry
...
####################
| Job hierarchy |
####################
ref
└─align
 └─sam
 └─bam
 └─dups
 └─index
 └─pileup
####################

We now have a JIP script to work with that does perform the same actions as our
initial script. But at this stage it is not very useful. In fact, all we did
was to add a little bit of boiler plate code to be able to actually run bash
commands, something we could do in our initial script naturally. Additionally,
we had to explicitly specify the execution order, again something that comes
naturally in the native bash implementation. There is already a bit of
benefit. All steps are now exposed in single jobs. Submitting the pipeline to
a compute cluster will submit 7 jobs to your cluster. That allows us to restart
parts of the pipeline in case of a failure easily. In addition, keep in mind
that in this particular pipeline, no parallelization is possible, but if you
would have steps in your pipeline that can be executed in parallel, you would
not have to to anything special. Jobs submitted to a compute cluster are
inter-linked with their dependencies and the cluster and decide to run things
in parallel, based on the dependencies.

With our initial implementation in place, we can start improving it. Even tough
we already have the ability to restart the pipeline in case of a failure, we
should tweak and improve the components inputs and outputs (see
Inputs, Outputs, and Options). This enables the system to cleanup after a failure, prevents
you from double submissions, and will improve the reporting capabilities of the
tools.

Essentially, the goal is to cleanly specify which files are needed as input to
a tool and which files are generated by a tool. In our example, we use the
bash wrapper to execute commands. This wrapper defines already three
options input, output and outfile. output and outfile are
quiet similar in nature, but output is used to handle streams while
outfile is intended to be used as a file name placeholder.

Our example pipeline, with proper input and output specification looks like
this:

#!/usr/bin/env jip -p
#
BWA/Samtools pileup
#
Usage:
pileup.jip -i <input> -r <reference> -o <output>
#
Inputs:
-i, --input <input> The input file
-r, --reference <reference> The genomic reference
Outputs:
-o, --output <output> The .bcf output file

out = r("${output|ext}")

ref = bash('bwa index ${reference}', outfile='${reference}.bwt')
align = bash('bwa aln -I -t 8 ${ref|ext} ${_ctx.input}') > "${out}.sai"
sam = bash('bwa samse ${reference} ${align} ${_ctx.input}') > '${out}.sam'
bam = bash('samtools view -bSu ${sam} | samtools sort - ${outfile|ext}', outfile='${out}.sorted.bam')
dups = bash('''
java -Xmx1g -jar /apps/PICARD/1.95/MarkDuplicates.jar \
 MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000\
 METRICS_FILE=${out}.metrics \
 REMOVE_DUPLICATES=true \
 ASSUME_SORTED=true \
 VALIDATION_STRINGENCY=LENIENT \
 INPUT=${bam} \
 OUTPUT=${outfile}
''', outfile="${out}.dedupe.bam")
index = bash('samtools index ${dups}', outfile='${out}.dedupe.bam.bai')
pileup = bash('samtools mpileup -uf ${reference} ${index|ext} | bcftools view -bvcg -', output='${out}.bcf')

Before we go step by step through the changes, make the pipeline executable and
create two dummy files we need to demonstrate what happens:

$> chmod +x pileup.jip
$> touch reads.txt
$> touch ref.txt

Now take a look at the new pipeline. First, examine your options:

$> ./pileup.jip -h

BWA/Samtools pileup

Usage:
 pileup.jip -i <input> -r <reference> -o <output>

Inputs:
 -i, --input <input> The input file
 -r, --reference <reference> The genomic reference
Outputs:
 -o, --output <output> The .bcf output file

Notice that your pipeline script always comes with the predefined
-h|--help option that print the documentation and the options.

Now try to perform a dry run on the pipeline, without specifying any
arguments::

$>./pileup.jip -- --dry
Option '-o/--output' is required but not set!

Default parameter validation is already in place. For input parameters,
files are also checked:

$>./pileup.jip -i reads.txt -r unknown.ref -o out.txt -- --dry
pileup: Input file not found: unknonwn.ref

Call the pipeline now with the appropriate parameters and you can compare the
current dry run with what we got for our initial implementation:

$>./pileup.jip -i reads.txt -r ref.txt -o out.txt -- --dry --show

The interesting observation: the Job States table now references
both input and output files for all jobs:

###
| job States |
+----------------+--------+--------------------+--------------------+
| Name | State | Inputs | Outputs |
+================+========+====================+====================+
ref	Hold		reference.fa.bwt
align	Hold	reference.fa.bwt	out.sai
sam	Hold	out.sai	out.sam
bam	Hold	out.sam	out.sorted.bam
dups	Hold	out.sorted.bam	out.dedupe.bam
index	Hold	out.dedupe.bam	out.dedupe.bam.bai
pileup	Hold	out.dedupe.bam.bai	out.bcf
+----------------+--------+--------------------+--------------------+

Now that the system is informed about all the inputs and outputs that are
passed through the system, failure situations are managed in an even cleaner
way. If a job fails, its output will be removed (you can prevent this, for
example for debugging purposes, with the --keep option)

Lets go through some of the steps in script. The first thing we changed, are
the pipeline options itself:

#!/usr/bin/env jip -p
#
BWA/Samtools pileup
#
Usage:
pileup.jip -i <input> -r <reference> -o <output>
#
Inputs:
-i, --input <input> The input file
-r, --reference <reference> The genomic reference
Outputs:
-o, --output <output> The .bcf output file

The shebang is set to /usr/bin/env jip -p which implicitly defines
a pipeline, so we can skip the explicit #%begin pipeline block definition.

Note

On some systems, passing arguments to the interpreter when using
/usr/bin/env does not seem to work. If you encounter a problem,
do not use the -p option but keep the explicit
#%begin pipeline block.

Next, we give a short description, not mandatory, but probably a good
idea. The description is followed by the parameter definitions. The interesting
part here is that we split the options into Inputs and Outputs,
defining both the input file and the reference as inputs to the script. If
you run the pipeline or push it through a dry run, you will notice that
from now on you need to specify both the input file as well as the reference
and both have to be existing files. By default all pipeline or tool inputs
are validated and checked for existence.

With the option definition in place, the context of the pipeline script is
populated with with the options at runtime and we can access input,
reference, and output directly in the script.

Next, we extract the output option, push it through a filter and store it in
a local variable:

out = r("${output|ext}")

From now on, we can reference the out variable on all our templates. This
step is optional, and we could have left it out and simply operate on the
global output, but we need it quiet often in this modified form, and
the local variable shortens the script a little bit. What happens here is the
following: a template (${output|ext}) is passed through the globally
available r() functions. r is a helper that takes a template string and
renders it within the current context. Within the template,
the value of output is pushed through the ext filter to cut away a file extension. For example, assume you
specified myresult.bcf as output, the out variable will no reference
the string myresult.

The next line is almost the same as before:

ref = bash('bwa index ${reference}', outfile='${reference}.bwt')

The only difference here is that we specify the output file to be
${reference}.bwt. This is because the BWA Indexer creates an output file
with the same name as the given reference file name and appends .bwt.
Specifying the output of the indexer allows us to implicitly reference it as
we can see in the next line:

align = bash('bwa aln -I -t 8 ${ref|ext} ${_ctx.input}') > "${out}.sai"

Three changes were applied here. First, instead of specifying the reference
file directly, we use ${ref|ext}. ref is the indexing job we created
first. The expression takes the default output of the job, in this case the
created index, puts it through the ext filter to get rid of the .bwt
extension, and inserts it into the template. In addition, a dependency between
ref and align is created. In the updated pipeline, we do not need to
explicitly define the execution order. The order is defined though the
dependencies.

The second thing that is new in this line is ${_ctx.input}. We want to
reference our initial input file. The one we specify in the command line. The
problem here is that the bash tool has its own input options, which
takes precedence over the globally defined input option. To access the global
value, we use the _ctx context variable.

Last but not least, we have to define the output of the align step. In this
example, we use a node operator <pipeline_operators> to delegate the output
of the command to a file. Internally, this set the default output of the tool
to be the specified file.

The rest of the pipeline uses similar features. Note that in each step, we
manage to reference the steps dependencies at least once. This frees us from
specifying the execution order of the pipeline.

Multiplexing

With our pipeline in-place, we can explore one more JIP feature that can come
in very handy if you have to deal with multiple data sets. Try to run the BWA
pipeline with more than one input file:

$> ./pileup.jip -i reads.txt other_reads.txt -r ref.txt -o '${input|ext}.bcf' -- --dry

The dry run will render the following job hierarchy:

####################
| Job hierarchy |
####################
ref
├─align.0
│ └─sam.0
│ └─bam.0
│ └─dups.0
│ └─index.0
│ └─pileup.0
└─align.1
 └─sam.1
 └─bam.1
 └─dups.1
 └─index.1
 └─pileup.1
####################

JIP is able to run all your tools and pipeline in a multiplexing mode where you
can specify multiple inputs and the pipeline will replicate itself. Note two
important things here. First, we had to to specify the output as:

-o '${input|ext}.bcf'

We could have also but a list of output names with the same length as the input
files, but it is often easier to base the output name on the input. We can do
this easily because we have access to the pipelines options. This we, we
specify the output name to be the input file name but replacing the file
extension with .bcf. Try to run the pipeline with only a single, fixed,
output name and JIP will complain.

In addition to the output file name, also note that only a single ref job
is created. The ref job takes the genomic reference file and creates an
index. This index is then used in both runs, hence we only have to run it once
and make it a global dependency for all other jobs. The detection happens
automatically and JIP merges jobs that reference the same tool with exactly
the same options into a single job.

Python module implementation

An alternative approach to a script, or a set of scripts, is to implement
tools and pipeline as python modules. It again depends on the use case
if you prefer to implement your tool as a script or as a python module.
Modules tend to make it easier to organize a set of tools and pipelines and
allow you a little bit more flexibility with respect to how you define
for example your options.
Here, we go once more through the BWA pipeline, but this time we separate
out the individual tools involved in the pipeline and make them reusable
components collected in a single python module pileup.py.

Lets start with the first step of the pipeline. The indexing of the genomic
reference.

from jip import *

@tool('bwa_index')
class BwaIndex():
 """\
 Run the BWA indexer on a given reference genome

 Usage:
 bwa_index -r <reference>

 Inputs:
 -r, --reference The reference
 """
 def validate(self):
 self.add_output('output', "%s.bwt" % self.reference)

 def get_command(self):
 return 'bwa index ${reference}'

The initial indexing step is already a little bit more sophisticated. We use
the @tool() decorator on a custom python class
BwaIndex. In this example, we specify the name parameter of the tool
decorator and call our new tool bwa_index. The @tool() decorator on a class expects to find an implementation of the
get_command() function with no additional
arguments. In this case, the function simply returns a template string that
will be executed using the bash interpreter. We use the class doc-string
to document our tool and specify the options. These options can then be
referenced in the command template (here we access the reference option).

The reason why we choose the class approach over a simple function is that the
BWA indexer creates a file with the same name than the input file and the
additional .bwt extension. This is the tools output, but it has to be
dynamically generated based on the given input. This
is what we implement in the validate function. There is no need to check
any additional options, all inputs are automatically validated, but we need
to add the output option. We can do this easily with the injected
function: add_output().

Assuming you saved the tool implementation in a file pileup.py, you can
run the tool directly from the command line:

$> JIP_MODULES=pileup.py jip run --dry --show bwa_index -r reference.fa

Note that we have to set the JIP_MODULES explicitly, otherwise the
tool will not be found by the system. You can however set a global
jip_modules setting in your configuration.

Next up is the bwa_align step. We implement the tool again
using the @tool() decorator, but this time on a function:

@tool(inputs=['input', 'reference'])
def bwa_align(object):
 """\
 Call the BWA aligner

 usage:
 bwa_align -r <reference> -i <input> [-o <output>]

 Options:
 -r, --reference <reference> The genomic reference file. This has to
 be indexed already and the index must be
 found next to the given .fa fasta file
 -i, --input <input> The input reads
 -o, --output <output> The output file
 [default: stdout]
 """
 return 'bwa aln -I -t 8 ${reference} ${input} ${output|arg(">")}'

The function returns a template and withing the template, we can access all
the options. The function name, bwa_align will be used as tool name, so
we do not have to add the name parameter, but, because we did not split the
options definition into Inputs, Outputs, and Options, we have to
use the input= parameter on the decorator to specify that both, the
input and the reference option should be treated as input options.
This enables automatic file validation on both options and we do not have to
implement a custom validation function to check the reference.

Note

If no explicit Inputs and Outputs are defined, options
named input or output are detected automatically. This works
only if no IO option is specified explicitly. That is the reason
why we specify both the input and the reference options as
input options in the decorator.

What if you want to access the options or other tool attributes outside
of the template? Maybe you want to implement some custom logic.
The solution is to add a function parameter to your implementation that will be
set to the current tool instance. For example, say we want to implement the bwa
to sam conversion step in a more flexible way and add a --paired option
that will change how the converter is called. Here is a possible
implementation:

@tool(inputs=['input', 'alignment', 'reference'])
def bwa_sam(tool):
 """\
 Convert output of the BWA aligner to SAM

 usage:
 bwa_sam [-p] -r <reference> -i <input> -a <alignment> [-o <output>]

 Options:
 -r, --reference <reference> The genomic reference index
 -a, --alignment <alignment> The BWA alignment
 -i, --input <input> The input reads
 -o, --output <output> The output file
 [default: stdout]
 -p, --paired Paired-end reads
 """
 if tool.paired:
 return 'bwa sampe ${reference|ext} ${alignment} ${input} ${output|arg(">")}'
 else:
 return 'bwa samse ${reference|ext} ${alignment} ${input} ${output|arg(">")}'

As you can see, the tool instance is injected into your function as a
parameter. You can use it to access the same functions and properties that
are injected if you use the class based approach.

Note

Note that in this particular example, there is also an alternative
approach to solve the problem and avoid an explicit if/else block.
You could make use of the arg and else template
filters and add this to your template:

${paired|arg("sampe")|else("samse")}

This will have the same effect: in case paired is set, sampe
will be rendered, otherwise it will fall back to samse.

In order to create a complete example, we have to implement all the steps
of the pipeline in a similar way. The JIP repository contains a full
example [https://github.com/thasso/pyjip/blob/develop/examples/bwa/pileup.py]
with implementation for all the tools and a few more trick. Now lets take
a quick look at how we can implement the pipeline itself in a python module:

@pipeline('pileup')
class PileupPipeline(object):
 """\
 Run BWA and samtools to align reads and create a pileup

 usage:
 pileup -r <reference> -i <input> -o <output>

 Options:
 -r, --reference <reference> The genomic reference file. This has to
 be indexed already and the index must be
 found next to the given .fa fasta file
 -i, --input <input> The input reads
 -o, --output <output> The output file

 """

 def pipeline(self):
 out = self.output
 p = Pipeline()
 ref = p.run('bwa_index', reference=self.reference)
 align = p.run('bwa_align', input=self.input,
 reference=ref, output="${out}.sai")
 sam = p.run('bwa_sam', input=self.input,
 reference=ref,
 alignment=align,
 output="${out}.sam")
 bam = p.run('sam2bam', input=sam, output="${out}.bam")
 dups = p.run('duplicates', input=bam, output="${out}.dedup.bam")
 index = p.run('bam_index', input=dups)
 pile = p.run('mpileup', input=index, reference="${ref|ext}", output=out)
 p.context(locals())
 return p

The implementation of a pipeline works exactly the same way as the
implementation of a tool. The differences are that we use the @pipeline
decorator and that, for a class based implementation like this one, we
implement the pipeline() function that returns a new
Pipeline instance. The implementation of the
pipeline works in the same way as in the script implementation, but we do
not have direct access to the run functions. Instead, we have to call
the run function on the pipeline instance.

The other difference is that the current local context is not available
automatically for template rendering. To enable access to the current local
context we call p.context(locals()) just before we return the pipeline.
This allows us to use for example, our local out variable in templates.

This pipeline can now be executed:

$>JIP_MODULES=pileup.py jip run --dry pileup -i reads.txt -r ref.txt -o out.txt

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	Examples

Dynamic Validation

The following JIP script demonstrates what you can do with dynamic options. It
grew out of a practical problem where we had to run the Flux Capacitor [http://sammeth.net/confluence/display/FLUX/Home] on both the output
of the TopHat [http://tophat.cbcb.umd.edu/] and the GEMTools [http://gemtools.github.io] pipeline.

The issue was that GEMTools creates a .bam file with the name that
should be used for the capacitor output, but TopHat writes its output
into a .bam file in a sub-folder, and the folders name is the one that
we want to use for the result file.

The solution to the problem was the JIP script below, where we set the
output option dynamically in the validation phase:

#!/usr/bin/env jip
Run the flux. NOTE this outputs stuff relative to CWD
#
usage:
flux.jip --input <bam> --annotation <annotation>

#%begin validate
if basename(input.get()) == 'accepted_hits.bam':
 name('flux-FL-${input|parent|name}')
 add_output('output', r('${input|parent|name}.gtf'))
else:
 name('flux-FL-${input|name|ext}')
 add_output('output', r('${input|name|ext}.gtf'))
#%end

flux-capacitor --threads $JIP_THREADS -o ${output} -a ${annotation} -i ${input}

In the validate block, we check the inputs base name. If its equal to
accepted_hits.bam, the output of TopHat, we add an output option and
render (note the r function call to render a template) its content to
the name of the parent folder. In all other cases, we render the value of the
output option to be the input files’ base name minus its extension.

In the execution part of the script, we can now access a valid and properly
set output option.

Because we had a handful of datasets that needed to be processed, we could also
leverage the multiplexing capabilities of all pipelines. This command
submitted all the TopHat based runs:

$~tophat> flux.jip --input `find . -name "accepted_hits.bam"` -- submit

The gemtools results were all located in a single folder, so we could start
all of them with:

$~gemtools> flux.jip --input *.bam -- submit

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	Examples

Argument filters and Streams

This small example demonstrates three features of JIP.

	Any interpreted language can be used to write executable blocks

	The arg and else template filters
can be handy when it comes to the tedios task of argument parsing and
interpretation

	JIP’s stream dispatcher allows you to
write streams to files and other processes in parallel.

Other interpreters

The default interpreter used in JIP templates and scripts is bash, but you
can change the interpreter easily. For this, you simply specify the name or
the path to the interpreter as a command block argument, for example,
#%begin command perl will open a perl interpreted command block.

Here is a full example where we use OCaml to drive our tool:

 #!/usr/bin/env jip
 #Send a greeting from ocaml
 #
 # usage:
 # hello -n <name> [-o <output>]
 #
 # Options:
 # -n, --name <name> Your name
 # -o, --output <output> The output
 # [default: stdout]

 #%begin command ocaml
 let o = ${output|arg('open_out "', '"')|else("stdout")};;
 Printf.fprintf o "Dear ${name}\n\n";;
 Printf.fprintf o "From the happy chambers of my spirit,\n";;
 Printf.fprintf o "I send forth to you, my smile.\n";;
 Printf.fprintf o "And, I pray that you shall carry it with you,\n";;
 Printf.fprintf o "as you travel each and every mile.\n";;

In order to switch to OCaml, simply start the command block with
#%begin command ocaml.

Argument filtering

In the example above, the tool exposes the output option to the user and
defaults to stdout. Here we use the arg and else
template filters to solve the problem. Somehow we
have to wither select stdout or open the user specified file. The line
that solves the problem is:

let o = ${output|arg('open_out "', '"')|else("stdout")};;

What happens here? First of all, everything outside of ${} is pure OCaml.
Inside the braces, the following logic is applied. Take the value of the
output options. If a value was assigned that is not a file stream and does
not evaluate to false, pass it to arg (see
jip.templates.arg_filter()) and insert the result. Otherwise, pass it
through else. The else argument of else is inserted if the passed value
is a file stream or evaluates to false.

In case the user specified an output file, we have to surround it with quotes
and pass it to OCamls open_out function. Here we solve this by specifying
the arg filters prefix and suffix arguments.

This results in the following evaluated output. If the user did not specify
an output file, arg takes the value and returns it unmodified. In this case,
the else block is the one that generates the final result:

let o = stdout;;

If an output file was specified, say myfile.txt, the argfilter will
surround it with the specified prefix and suffix and create the final result
as:

let o = open_out "myfile.txt"

Dispatching streams

Lets take the hello tool from the previous example and create a small,
indeed not very useful, counting pipeline:

#!/usr/bin/env jip -p
Count words and lines
#
usage:
counter <name>

greetings = run('hello', name=args['name'])
line_count = bash('wc -l', input=greetings)
full_count = bash('wc', input=greetings)

Note

In this example, we do not open a block with
#%begin pipeline to start implementing our pipeline. Instead,
we pass the -p parameter to the jip interpreter in the shebang
line. This switches to pipeline mode automatically.

The pipeline in this example is rather straight forward. We take a single
name argument. Then we call hello, our OCaml tool from the previous
example. Next, the output of hello, called greetings, is passed as
input to two bash tools, one that does a full count, and one that only
counts lines.

Lets perform a dry run to see what happens. Don’t worry, we will not start the
pipeline, so there is no need to have OCaml installed:

$> ./counter.jip Joe -- --dry
...
##...
| ...
+--------------------------------+--------+-----------------...
| Name | State | ...
+================================+========+=================...
| greetings|line_count|full_coun | Hold | ...
| t | | ...
+--------------------------------+--------+-----------------...
####################
| Job hierarchy |
####################
greetings
├─line_count
└─full_count
####################

The dry run screen for this pipeline show is two things.

First, the dependencies are correct as you can see from the Job Hierarchy.
Greetings is the primary job and executed first and the other two jobs depend
on it.

Second, the Job states table shows only a single job called
greetings|line_count|full_count. This indicates that all three jobs have
streams connecting them and they all have to be executed in parallel. In
case you want to submit the pipeline to a compute cluster, this means all three
jobs have to be executed on the same node in a single cluster job. The reason
for this behavior is obvious. Our hello tool prints its output to
stdout and the two counter tools read from stdin.

Lets modify the pipeline a little bit and write the output of our call to
hello into a result file. The rest of the pipeline stays untouched:

 greetings = run('hello', name=args['name'], output='result.txt')
 line_count = bash('wc -l', input=greetings)
 full_count = bash('wc', input=greetings)

Watch what happens when we perform a dry run:

$> ./counter.jip Joe -- --dry
...
###...
| ...
+--------------------------------+--------+----------------...
| Name | State | ...
+================================+========+================...
| greetings | Hold | ...
| line_count | Hold | result.txt ...
| full_count | Hold | result.txt ...
+--------------------------------+--------+----------------...
####################
| Job hierarchy |
####################
greetings
├─line_count
└─full_count
####################

The job hierarchy stays untouched as we did not modify any of the dependencies,
but instead of a single job, all three tools are now executed in dedicated
jobs. The table already shows the reason. The two counter jobs are now operating
on the output file of the greetings job. greetings has to finish first,
but the two counters can now be executed in two separate jobs.

If this is beneficial or not depends on the tasks and on your compute
infrastructure. For example, if one of the secondary jobs is able to work
multi-threaded while the other one uses only a single CPU, it might be nice
to split them into two dedicated job on your cluster. On the other hand, if
your data stream is quiet large and the task is not very computationally
intense, it might be better stream the data through all the jobs and submit
only a single job to you your cluster.

Now, what if you want the results of the initial job to be stored in
your results.txt output file but you still would like to stream the
data through to your other two jobs. In pure bash, you might solve it with
bashs tee command. In JIP, you can achieve the same goal by adding a
single line to your pipeline that ensures the stream pipe behaviour:

 greetings = run('hello', name=args['name'], output='result.txt')
 line_count = bash('wc -l', input=greetings)
 full_count = bash('wc', input=greetings)

 greetings | (line_count + full_count)

The last line of the pipeline recreates the pipes, but keeps the results
file as part of the stream. The output of greetings will be streamed
to results.txt and to the two counter jobs.

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	Examples

Modify the execution environment

All executable units in the JIP system are attached to a specific
Profile that can be modified from within the tool
implementation as well as at submission or execution time.

The Profile

The jip.profiles module documentation covers the properties that you
can set and modify. Here, we will go over some of them to explain how and in
which order a certain profile is applied to a job at execution time.

The Job name

Job profiles of a tool can be accessed from within the tools setup or
validate block. This is important because the properties of the profile are
applied as submission time properties. That means they have to be set when the
tool is submitted to your compute cluster.

You can set the job name using either the name() function or the job
attribute. For example:

>>> from jip import *
>>> @tool()
... class MyTool(object):
... def setup(self):
... self.name("Custom-Name")
... # this is equivalent
... self.job.name = "Custom-Name"
... def get_command(self):
... return "true"
>>> p = Pipeline()
>>> node = p.run('MyTool')
>>> jobs = create_jobs(p)
>>> assert jobs[0].name == 'Custom-Name'

Your tool, and therefor the job that is be created from the tool will have a
given name, in this case “Custom-Name”.

The same technique works for pipelines, but they will alter the pipeline name
not the names of the embedded jobs within the pipeline:

>>> from jip import *
>>> @pipeline()
... class MyPipeline(object):
... def setup(self):
... self.name("The-Pipeline")
...
... def pipeline(self):
... p = Pipeline()
... p.run("MyTool")
... return p
...
>>> p = Pipeline()
>>> node = p.run('MyPipeline')
>>> jobs = create_jobs(p)
>>> assert jobs[0].pipeline == 'The-Pipeline'
>>> assert jobs[0].name == 'Custom-Name'

If you run “MyPipeline”, the pipeline name will be set to “The-Pipeline”,
but the jobs’ name will still be “Custom-Name”. You can however change the
job names when you construct the pipeline. For this, you can create a custom
profile that will be applied to the job. For example:

>>> @pipeline()
... class MyPipeline(object):
... def setup(self):
... self.name("The-Pipeline")
...
... def pipeline(self):
... p = Pipeline()
... p.job("The-Tool").run("MyTool")
... return p
...
>>> p = Pipeline()
>>> node = p.run('MyPipeline')
>>> jobs = create_jobs(p)
>>> assert jobs[0].pipeline == 'The-Pipeline'
>>> assert jobs[0].name == 'The-Tool'

Here, we used p.job("The-Tool") to create a custom environment with a
specified name. Then we run a tool in that environment.

Please keep in mind that multiplexing alters jobs names. If a pipeline
contains two jobs with the same name, their names will be suffixed with a
counter starting at ‘0’ and applied in the order the nodes where added to
the pipeline. For example:

>>> @tool()
... class MyTool(object):
... """My tool
... usage:
... mytool <input>
... """
... def setup(self):
... self.name("MyName")
...
... def get_command(self):
... return "true"
...
>>> @pipeline()
... class MyPipeline(object):
... def setup(self):
... self.name("The-Pipeline")
...
... def pipeline(self):
... p = Pipeline()
... p.run("MyTool", input=['A', 'B'])
... return p
>>> p = Pipeline()
>>> node = p.run('MyPipeline')
>>> jobs = create_jobs(p, validate=False)
>>> assert jobs[0].pipeline == 'The-Pipeline'
>>> assert jobs[0].name == 'MyName.0'
>>> assert jobs[1].pipeline == 'The-Pipeline'
>>> assert jobs[1].name == 'MyName.1'

In this example, we call MyTool with two input values A and B. That
causes the multiplexing to kick in and results in two jobs are created:
MyTool.0 and MyTool.1.

With multiplexing in place it can be useful not to apply fixed names or other
environment properties to your nodes, but use templates to customize, for
example, your job names according to the tools options. Take the example from
above. We can use the jobs input option to construct more meaningful job
names:

>>> @tool()
... class MyTool(object):
... """My tool
... usage:
... mytool <input>
... """
... def setup(self):
... self.name("${input|name}")
...
... def get_command(self):
... return "true"

>>> @pipeline()
... class MyPipeline(object):
... def setup(self):
... self.name("The-Pipeline")
...
... def pipeline(self):
... p = Pipeline()
... p.run("MyTool", input=['A', 'B'])
... return p
>>> p = Pipeline()
>>> node = p.run('MyPipeline')
>>> jobs = create_jobs(p, validate=False)
>>> assert jobs[0].pipeline == 'The-Pipeline'
>>> assert jobs[0].name == 'A'
>>> assert jobs[1].pipeline == 'The-Pipeline'
>>> assert jobs[1].name == 'B'

In this example, the created jobs will have the names ‘A’ and ‘B’.

Note

In order to assign the node names, we make use of the name
template filter. We do so because JIP
operates on absolute paths of input and output files and we
only want to use the base name if the input file here.

Custom profiles in pipelines

We have seen before that we can use the job() function to create a custom
profile and then run a job with that profile. In fact, you can use this to
create a set of profiles in your pipeline and then run different jobs with
different profiles. For example, assume that you have a few tools that need
more CPU’s and, in your environment, they have to be submitted to a specific
queue. Other jobs should just run with a default profile. You could
do something like this in a JIP script (you can call the same functions on a
pipeline directly).

slow = job(threads=8, queue="slow_queue", time="8h")
fast = job(threads=1, queue="fast_queue", time="1h")

europe = slow.run('predict_weather', location='Europe')
america = slow.run('predict_weather', location='America')

stats = fast.run('weather_stats', predictions=[europe, america])

In this example, we create two job profiles, one for slow, multi-threaded jobs,
and one for fast jobs. We can then run tools, here predict_weather and
weather_stats using these dedicated profiles. The profiles themselves are
again callable. That means you can further customize them. Say you want to
assign names to the jobs and set a higher priority to one of them:

europe = slow("EU", priority=20).run('predict_weather', location='Europe')
america = slow("USA", priority=10).run('predict_weather', location='America')

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

JIP command line utilities

JIP bundles a set of command line utilities.

	jip - the master and control command
	Synopsis

	Options

	Commands

	jip jobs - list jobs
	Synopsis

	Description

	Options

	jip tools - list available tools
	Synopsis

	Description

	Tools scripts

	Tools implemented in Python modules

	Options

	jip profiles - list configured profiles
	Synopsis

	Description

	Options

	jip bash - bash command wrapper
	Synopsis

	Description

	Options

	jip pipe - pipe command wrapper
	Synopsis

	Description

	Options

	jip run - run jip script
	Synopsis

	Description

	Options

	Tool and options

	jip submit - submit jip script
	Synopsis

	Description

	Options

	Tool and options

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip - the master and control command

This is the master and control command for jip. Use it to invoke supported
sub-command to launch, check, and modify jobs.

Synopsis

jip [–loglevel <level>] [-p] <command> [<args>...]

jip [–version] [–help]

Options

	
-p, --pipeline
	the file contains a pipeline (interpreter mode)

	
-h, --help
	Show this help message

	
--version
	Show the version information

	
--loglevel <level>

		Set the JIP log level to one of error|warn|info|debug

Commands

The following commands are available to run and submit jobs.

	run

	Locally run a jip script

	submit

	submit a jip script to a remote cluster

	bash

	Run or submit a bash command

The following command can be used to show and filter a list of
jobs:

	jobs

	list and update jobs from the job database

The jip jobs command output can be piped into one of the following
action command. Note that the commands also work standalone:

	delete

	delete the selected jobs

	archive

	archive the selected jobs

	cancel

	cancel selected and running jobs

	hold

	put selected jobs on hold

	resume

	resume selected jobs that are on hold

	restart

	restart selected jobs

	logs

	show log files of jobs

Miscellaneous other commands:

	tools

	list all tools available through the search paths

	profiles

	list all available profiles

	edit

	edit job commands

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip jobs - list jobs

Synopsis

	jip-jobs [-s <state>...] [-o <output>...] [-e]

	[–show-archived] [-j <id>...] [-J <cid>...]
[-N] [-q <queue>] [-h]

Description

List jip jobs

Options

	
--show-archived

		Show archived jobs

	
-e, --expand
	Do not collapse pipeline jobs

	
-o <output>, --output <output>

		Show only specified columns.
See below for a list of supported columns

	
-s <state>, --state <state>

		List jobs with specified state

	
-q <queue>, --queue <queue>

		List jobs with a specified queue

	
-j <id>, --job <id>

		List jobs with specified id

	
-J <cid>, --cluster-job <cid>

		List jobs with specified cluster id

	
-N, --no-pager
	Does not pipe the result to the pager

	
-h, --help
	Show this help message

Columns supported for output:

ID The internal job id
C-ID The job id assigned by the cluster
Name The jobs name
Pipeline The name of the pipeline
State The jobs current state
Queue The jobs queue
Priority The jobs priority
Threads Number of threads assigned to the job
Hosts Host(s) where the job is executed
Account The account used for the job
Memory The jobs max memory setting
Timelimit The jobs time limit
Runtime The runtime of the job
Created Create date of the job
Started Execution start date of the job
Finished Execution finish date of the job
Directory The jobs working directory

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip tools - list available tools

Synopsis

jip tools [–help|-h]

Description

List all JIP tools/scripts that are available in the search paths.

Tools scripts

All script found in the current search paths are listed. Please note that there
might be more. Here, we search only for files with the .jip extension!

The following locations are searched:

	Current directory

	Jip configuration (jip_path)

	JIP_PATH environment variable

Tools implemented in Python modules

The modules must be available in PYTHONPATH and must be specified in
the jip configuration or in the JIP_MODULES environment variable.
Please note that pipeline scripts that contain python blocks are allowed to
load modules that contain tool implementation. These tools might not be found
by this scan!

The following locations are searched:

	Jip configuration (jip_moduled)

	JIP_MODULES environment variable

Options

-h, –help Show this help message

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip profiles - list configured profiles

Synopsis

jip profiles [–help|-h]

Description

List all available cluster profiles

Options

-h, –help Show this help message

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip bash - bash command wrapper

Synopsis

	jip bash [-P <profile>] [-t <time>] [-q <queue>] [-p <prio>]

	[-A <account>] [-C <cpus>] [-m <mem>] [-n <name>]
[–hold] [-O <out>] [-E <err>] [–dry] [–show]
[-i <input>] [-o <output>] [-s] [–keep] [–force]
-c <cmd>...

jip bash [–help]

Description

Wraps a bash command and either executes it directly or submits it to
a compute cluster

Please not that this command is indented to work on single file input/output.
You can specify more that one input file and the command will run independently
on all inputs. The ‘output’ options is used for pipes explicitly. If you do not
want to pipe your output, but handle output yourself, use the ‘outfile’
(-f/–outfile) option. Here is a quick example:

jip bash -n 'LC ${input}' --input A.txt B.txt \
 -f '${input|ext}.count' -c 'wc -l ${input} > ${outfile}'

This will run the following two jobs:

wc -l A.txt > A.count

and

wc -l B.txt > B.count

Note that you can use the job options also in the jobs name, which might
be usefull if you run the job on a compute cluster.

Options

	
-P <profile>, --profile <profile>

		Select a job profile for resubmission

	
-t <time>, --time <time>

		Max wallclock time for the job

	
-q <queue>, --queue <queue>

		Job queue

	
-p <priority>, --priority <priority>

		Job priority

	
-A <account>, --account <account>

		The account to use for submission

	
-C <threads>, --threads <cpus>

		Number of CPU’s assigned to the job

	
-m <mem>, --mem <mem>

		Max memory assigned to the job

	
-n <name>, --name <name>

		Job name

	
-R <reload>, --reload

		Reload and rerender the job command

	
-E <err>, --log <err>

		Jobs stderr log file

	
-O <out>, --out <out>

		Jobs stdout log file

	
-s, --submit
	Submit as job to the cluster

	
--hold
	Put job on hold after submission

	
--keep
	Keep output also in case of failure

	
--dry
	Show a dry run

	
--show
	Show the command that will be executed

	
--force
	Force execution/submission

	
-i <input>, --input <input>

		The scripts input
[default: stdin]

	
-o <output>, --output <output>

		The scripts output
[default: stdout]

	
-s, --submit
	Submit as job to the cluster

	
-h, --help
	Show this help message

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip pipe - pipe command wrapper

Synopsis

	jip pipe [-P <profile>] [-t <time>] [-q <queue>] [-p <prio>]

	[-A <account>] [-C <cpus>] [-m <mem>] [-n <name>]
[–hold] [-E <err>] [–dry] [–show]
[-i <input>] [-I <inputs>...] [-s] [–keep] [–force]
[-c <cmd>...]

jip pipe [–help]

Description

This command can be used to quickly construct pipelines from the command line.

For example:

jip pipe -i myfile.txt -c 'bash("cat ${input}", input=input) | bash("wc -l")'

Options

	
-P <profile>, --profile <profile>

		Select a job profile for resubmission

	
-t <time>, --time <time>

		Max wallclock time for the job

	
-q <queue>, --queue <queue>

		Job queue

	
-p <priority>, --priority <priority>

		Job priority

	
-A <account>, --account <account>

		The account to use for submission

	
-C <threads>, --threads <cpus>

		Number of CPU’s assigned to the job

	
-m <mem>, --mem <mem>

		Max memory assigned to the job

	
-n <name>, --name <name>

		Job name

	
-R <reload>, --reload

		Reload and rerender the job command

	
-E <err>, --log <err>

		Jobs stderr log file

	
-O <out>, --out <out>

		Jobs stdout log file

	
-s, --submit
	Submit as job to the cluster

	
--hold
	Put job on hold after submission

	
--keep
	Keep output also in case of failure

	
--dry
	Show a dry run

	
--show
	Show the command that will be executed

	
--force
	Force execution/submission

	
-i <input>, --input <input>

		Single file input
[default: stdin]

-I <inputs>, –inputs <inputs>... List of files as input
-s, –submit Submit as job to the cluster
-h, –help Show this help message

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip run - run jip script

Synopsis

jip run [-p] [-f] [-k] [–dry] [–show] <tool> [<args>...]

jip run [–help]

Description

Run a jip tool or a jip script

Options

	
-p, --pipeline
	The specified script contains a pipeline

	
--force
	Force execution

	
--keep
	Do not delete output on job failure

	
--dry
	Print a dry run

	
--show
	Show the executed commands

	
-h, --help
	Show this help message

Tool and options

	tool

	The name of the tool or the path to a jip script

	args...

	Tool or script arguments

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	JIP command line utilities

jip submit - submit jip script

Synopsis

	jip submit [-f] [-k] [-P <profile>] [-t <time>] [-q <queue>]

	[-p <prio>] [-A <account>] [-C <cpus>] [-m <mem>] [-n <name>]
[-o <out>] [-e <err>] [-H] [–dry] [–show]
<tool> [<args>...]

jip submit [–help]

Description

Submit a jip tool or a jip script

Options

	
-P <profile>, --profile <profile>

		Select a job profile for resubmission

	
-t <time>, --time <time>

		Max wallclock time for the job

	
-q <queue>, --queue <queue>

		Job queue

	
-p <priority>, --priority <priority>

		Job priority

	
-A <account>, --account <account>

		The account to use for submission

	
-C <threads>, --threads <cpus>

		Number of CPU’s assigned to the job

	
-m <mem>, --mem <mem>

		Max memory assigned to the job

	
-n <name>, --name <name>

		Job name

	
-R <reload>, --reload

		Reload and rerender the job command

	
-E <err>, --log <err>

		Jobs stderr log file

	
-O <out>, --out <out>

		Jobs stdout log file

	
-s, --submit
	Submit as job to the cluster

	
--hold
	Put job on hold after submission

	
--keep
	Keep output also in case of failure

	
--dry
	Show a dry run

	
--show
	Show the command that will be executed

	
--force
	Force execution/submission

	
-h, --help
	Show this help message

Tool and options

	tool

	The name of the tool or the path to a jip script

	args...

	Tool or script arguments

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

The JIP API

The JIP platform is mostly written in Python, except for the stream dispatcher,
which is written in C and integrated as a Python Extension. This documentation
covers the JIP API and describes the basic modules and classes that make up the
system.

In a lot of cases it will not be necessary to read and understand the full API
reference. It might come in handy though when you are in the situation of
extending the system, for example, adding support for your own cluster, or if
you want to dig deeper and see how things are created.

In addition to the full API reference linked below, this chapter contains an
overview and description of how to use the API for a few specific use-cases.
This will hopefully cover the basic of using JIP as a library rather than
a command line utility in your own tool. We will go over the basic process
of loading and instantiating a pipeline without your own programs, configuring
parts of the system at runtime, and how to run jobs locally or submit them
to a remote cluster.

Creating pipelines

One of the first things you might want to do is to actually run one of your
tools or create a pipeline. Both are very similar in nature. Running any tool
always start with adding the tool to a pipeline. The pipeline is then expanded
using its expand() method and converted to a
set of jobs. These jobs can then be executed in order or submitted to a
compute cluster.

Lets start with creating a pipeline instance. You can import the necessary
classes and function directly from the jip module:

>>> from jip import *

This will load most of the important parts of the API into your namespace.
Starting from here, you can create a pipeline instance and add any tools
that you want to execute. Usually you don’t need to create instances of your
tools, but reference them by name. If the tool can not be found, a
jip.tools.ToolNotFoundException is raised. In that case, you either
misspelled the tool name or you have to configure the jip.scanner instance
in order to add custom search paths (see The Scanner on how to
customize the search paths):

>>> p = Pipeline()
>>> p.run("unknown")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "jip/pipelines.py", line 180, in run
 tool = find(_tool_name)
 File "jip/tools.py", line 410, in find
 raise ToolNotFoundException("No tool named '%s' found!" % name)
ToolNotFoundException: No tool named 'unknown' found!

In case you want to be sure, catch and handle the ToolNotFoundException,
but typically this is a serious issue and the exception should be raised up.

Now lets go through the process once more, this time adding a bash run
to the pipeline:

>>> p = Pipeline()
>>> p.bash('ls')
bash
>>> print len(p)
1

We now have a pipeline graph with exactly one Node.

Running jobs locally

Pipeline instances represent the execution graph and its properties, but they
are not meant to be executed directly. We have to convert the pipeline nodes
into jobs that can be executed wither locally or send
to a remote cluster. The first step here is to create the job instances:

>>> jobs = create_jobs(p)
>>> assert len(jobs) == 1

In the background, the pipeline was expanded, options were rendered, and the
job were validated. In case one of the tools in the pipeline was misconfigured
and the validation would step would raise a ValidationError. These are
rather common, especially when you pass along user input, so you might want
to run the create_jobs call in a try/except block to catch any
exceptions.

Now that we have a list of jobs to execute, you might think we are ready to
go, but unfortunately that is not yet the case. The call to create_jobs
returns an ordered list of all the jobs in the pipeline graph, but we do
not want to start all of them independently. We might also want to perform
further checks on the jobs. Some of them might already be completed and unless
we want to force execution, we do not have to send them again. We also want to
group jobs. The main reason is that JIP allows you to create data streams
between jobs. That means the jobs involved have to run in parallel and their
input and output streams have to be handled appropriately. These sets of jobs
form groups and we only have to start the primary job of each group. The
other jobs will be started automatically in the right order and with the right
I/O setup. The JIP API, specifically, the jip.jobs module, provides
a set of low level functions to perform the grouping and additional checks,
but it also contains a few helper functions that wrap around common use cases.
We are trying to implement one of these common ones, running a pipeline.
Therefore we are lucky and can leverage some of the helpers:

>>> for exe in create_executions(jobs, check_outputs=True):
... print "Running %s:" % exe.name,
... if exe.completed:
... print "Skipped"
... elif run_job(exe.job):
... print "Success"
... else:
... print "Failure"
... break
...
Running bash: Success
>>>

What happens is that we iterate over all available execution and run all
jobs that are not yet in completed state. In case of a failure, we break the
loop and stop executing.

Save and submit jobs

The same rules that apply to running jobs locally also apply when you want
to submit jobs to a remote cluster, but we need to do a little bit more work.
In order to get jobs submitted, we have to store them in a JIP database that
is accessible by the cluster before we can use in instance of your compute
cluster to actually submit the job. The JIP database location and the JIP
cluster instance can both be configured within the JIP configuration. In the
command line application that is shipped with JIP, this is the way to modify
both the database and the cluster. When using the JIP API directly, you can
leverage the same functionality and we provide examples of how you can get the
pre-configured database and cluster instance below. For this example, we will go through the process of
manually configuring both the cluster instance as well as the database.

The initial process of creating the jobs for a given pipeline is the same as if
you want to run the jobs locally:

>>> jobs = create_jobs(p)
>>> assert len(jobs) == 1

If you want to use the preconfigured configuration, you only have to modify the
call to create_executions to ensure that jobs are saved in the database, and
use submit_job rather than run_job:

for exe in create_executions(jobs, check_outputs=True):
 print "Submitting %s:" % exe.name,
 if exe.completed:
 print "Skipped"
 elif submit_job(exe.job):
 print "Submitted job %s with remote id %s" % (exe.job.id,
 exe.job.cluster_id)
 else:
 print "Failure"
 break

You might want to add a global profile to your run, for example, to specify
the queue that is used during submission. Use the jip.profiles module to
load a preconfigured profile:

import jip.profiles
profile = jip.profiles.get("default")
for exe in create_executions(jobs, check_outputs=True, profile=profile):
 ...

Customize the database location

Without any further specification, the JIP database is configured by the user
in the JIP configuration files. You can however use the API to alter and
modify the location.

The database reference is globally stored in the jip.db module. If you want
to use a different location, make sure you initialize the jip.db module
properly:

import jip.db
jip.db.init("</path/to/db.file>")

Use the JIP configuration

TODO: Add more docs for the api based configuration

The Scanner

TODO: Document the tool scanner

JIP modules and Classes

	jip.cli

	jip.cluster
	Methods

	Abstract Cluster class

	Exceptions

	Implementations

	jip.configuration

	jip.db
	Database access

	Module Methods

	Persisted properties

	Job Utility functions

	Job states

	The Job class

	jip.executils

	jip.jobs
	Job creation

	Job actions

	Job iteration and sorting

	jip.profiles
	General properties

	Cluster/Grid specific properties

	jip.options

	jip.pipelines

	jip.templates

	jip.tools
	Decorators

	Tool classes

	Blocks and Block utilities

	Tool Scanner

	Exceptions

	jip.utils

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.cli

The JIP command line package contains utilities and the modules
that expose command line functions for the JIP command. The module hosts
a set of utility functions that can be used to simplify the process of
interacting with the JIP API from within a command line tool.

Functions in this module might have certain limitations when you want to use
them as general API calls. Most of the output generation functions print to
stdout and this can not be changed. In addition, be very careful the
dry(), it calles sys.exit(1) in case of a failure.

Warning

Both run() and dry() call sys.exit(1) in
case of a failure! Be very careful when you want to call them
outside of a command line tool that is allowed terminate!

Note

Please note that you can use the module to implement custom command
line utilities, but it was written to support the commands that are
shipped with JIP. That means the modules functions might change
according to the needs of the internal command line utilities.

	
jip.cli.STATE_COLORS = {'Canceled': '\x1b[93m', 'Failed': '\x1b[91m', 'Running': '\x1b[94m', 'Done': '\x1b[92m', 'Hold': '\x1b[93m', 'Queued': ''}

	Maps job states to colors

	
jip.cli.colorize(string, color)

	Colorize a string using ANSI colors.

The jip.cli module contains a few ANSI color definitions that
are used quiet often in the system.

	Parameters:	
	string – the string to colorize

	color – the color that should be used

	
jip.cli.confirm(msg, default=True)

	Print the message and ask the user to confirm. Return True
if the user confirmed with Y.

	Parameters:	
	msg – the message

	default – Default answer

	
jip.cli.create_table(header, rows, empty='', to_string=<function table_to_string at 0x7f4bfd76e398>, widths=None, deco=2)

	Create a table.

	Parameters:	
	header – list of table column names

	rows – list of list of row values

	empty – string representation for None values

	to_string – function reference to the converter function that
creates string representation for row values

	width – optional list of columns widths

	deco – Texttable decorations

	Returns:	Texttable table instance

	
jip.cli.dry(script, script_args, dry=True, show=False)

	Load the script and initialize it with the given arguments, then
perform a dry run and print the options and commands

Warning

This method calls sys.exit(1) in case an Exception
is raised

	Parameters:	
	script – the script

	script_args – script arguments

	dry – print job options

	show – print job commands

	
jip.cli.parse_args(docstring, argv=None, options_first=True)

	Parse the command line options

	Parameters:	
	docstring – the docstring that will be parsed

	argv – the arguments. Defaults to sys.argv if this is not specified

	Returns:	parsed options as dictionary

	
jip.cli.parse_job_ids(args, read_stdin=True)

	Resolves job and clsuter ids specified in the args –job
and –cluster-job options. In additon, this reads job ids from
stdin.

	Parameters:	args – parsed command line options

	Returns:	tuple of job ids and cluster ids

	
jip.cli.read_ids_from_pipe()

	Read job ids from a stream

	
jip.cli.render_table(header, rows, empty='', widths=None, to_string=<function table_to_string at 0x7f4bfd76e398>, deco=2)

	Create a simple ASCII table and returns its string representation.

	Parameters:	
	header – list of table column names

	rows – list of list of row values

	empty – string representation for None values

	to_string – function reference to the converter function that
creates string representation for row values

	width – optional list of columns widths

	Returns:	string representation of the table

	
jip.cli.resolve_job_range(ids)

	Resolve ranges from a list of ids. Given list of id strings
can contain ranges separated with ‘-‘. For example, ‘1-10’ will
result in a range from 1..10.

	Parameters:	ids (string or list of strings) – string or list of strings of ids

	Returns:	resolved list of ids

	Return type:	list of integers

	Raises ValueError:

		if on of the ids could not be converted to a valid,
positive id

	
jip.cli.show_commands(jobs)

	Print the commands for the given list of jobs

	Parameters:	jobs (list of jip.db.Job) – list of jobs

	
jip.cli.show_dry(jobs, options=None, profiles=False)

	Print the dry-run table to stdout

	Parameters:	
	jobs – list of jobs

	options – the parent script options

	profiles – render job profiles table

	
jip.cli.show_job_profiles(jobs, title='Job profiles')

	Print the job profile for a given list of jobs.

The job profile contains the following properties:

	Name

	The job name

	Queue

	The queue assigned to the job

	Priority

	The jobs priority

	Threads

	Number of threads assigned to the job

	Time

	Maximum run time assigned to the job

	Memory

	Maximum memory assigned to the job

	Account

	The account assigned to the job

	Directory

	The jobs working directory

	Parameters:	
	jobs (list of jip.db.Job) – list of jobs

	title – a title for the table

	
jip.cli.show_job_states(jobs, title='Job states')

	Print the job states table for a list of jobs.

	Parameters:	
	jobs (list of jip.db.Job) – list of jobs

	title – a title for the table

	
jip.cli.show_job_tree(jobs, title='Job hierarchy')

	Prints the job hierarchy as a tree structure

	Parameters:	
	jobs (list of jip.db.Job) – list of jobs

	title – a title for the table

	
jip.cli.show_options(options, title=None, excludes=None, show_defaults=True)

	Print the options to a table

	Parameters:	
	options (jip.options.Options) – the options

	title – a title for the table

	excludes – list of option names that will be excluded

	show_defaults – if True, all options will be printed, otherwise,
only options that are different from their default
value will be included

	
jip.cli.table_to_string(value, empty='')

	Translates the given value to a string
that can be rendered in a table. This functions deals primarily with
datatime.datetime and datetime.timedelta values. For all
other types, the default string representation is returned.

	Parameters:	
	value – the value

	empty – the replacement used for None value

	Returns:	table compatible string representation

	Return type:	string

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.cluster

The JIP cluster module contains the main class that has to be extended
to add cluster support as well as useful helper functions to access the
cluster instance.

Cluster implementation provide a set of minimal functionality that covers
the following tasks:

	submit jobs to a compute cluster

	list currently running or queued jobs

	cancel a job

In addition, a cluster implementation might provide the ability to:

	resolve paths to log file

	update job meta data

The current JIP release bundles implementation for the following grid engines:

	Slurm [http://slurm.schedmd.com/] is supported using
the jip.cluster.Slurm class

	SGE/OGE [http://gridscheduler.sourceforge.net/] are supported using
the jip.cluster.SGE class

	PBS/Torque [http://www.adaptivecomputing.com/products/open-source/torque/]
are supported using the jip.cluster.PBS class

	Platform LSF [http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/]
are supported using the jip.cluster.LSF class

If you want to implement your own cluster integration, the class to extend from
is Cluster. In order to get a working implementation, implement at
least the Cluster.submit() function. This will already allow you to
submit jobs. All other functions are optional, but of course necessary if you
want to provide the functionality. The main purpose of the submit method is to
get your job on a remote cluster. The parameter passed to the submit method is
a Job instance. The job contains all available information
about the execution and the submit implementation is allowed and encourage
to update some of the fields of the jobs. Most importantly, make sure you set
the jobs job_id after successful submission. In addition, commonly updated
fields are stdout and stderr, setting the correct paths to log files.
Please take a look at the Cluster.resolve_log() function on how log
file names are handles. Within submission, if you update these fields, you are
encouraged to include place-holders in the file names.

Note

You can get the command that should be send to the
cluster using jip.db.Job.get_cluster_command()! Please
do NOT try to send the Jobs command directly. Job execution
has to go through JIP in order to provide all functionality.

If you need to pass specific configuration to your cluster, DO NOT use
mandatory initializer parameters. The cluster module has to be able to
instantiate your class without any parameter. You can however use keyword
argument in order to allow easy manual instantiation. However, defaults should
be loaded from the jip configuration. This is the
preferred way for a user to configure the cluster instance. You have full
access to the JIP configuration using the jip.config global variable. The
variable holds an initialized instance of
Config. Here is an example of how you can allow
the user to add a custom configuration block and then use it to access
configured values:

>>> import jip
>>> from jip.cluster import Cluster
>>> class MyCluster(Cluster):
... def __init__(self):
... cfg = jip.config.get('myconfig', {})
... self.myvalue = cfg.get('myvalue', 1)
>>>

If you need to allow for custom configuration, please do not forget to
document the blocks and fields that are supported and have to be added to
the configuration.

If an error occurs during job submission, please raise an
SubmissionError containing a useful error message. Please note also
that you should use jip.logging module and expose some useful logging
statements. If you submit jobs by calling an external command, for example with
python subprocess, please log the full command at debug log level. You can
get a logger instance like this:

>>> import jip.logger
>>> log = jip.logger.getLogger('my.module')

Besides the cluster class, this module has a get() function that
can be used to get an instance of the currently configured cluster environment.
The get() functions always returns a cached version of the cluster
instance and all implementation should avoid storing instance variables that
are job dependent.

Methods

	
jip.cluster.get(name=None)

	Returns the currently configured cluster instance using the configured
class name in the configuration if no explicit name is specified.

	Parameters:	name – specify explicitly a full class name to the cluster
implementation

	Returns:	the Cluster instance

	Return type:	Cluster

	Raises ClusterImplementationError:

		if the specified cluster implementation
could not be loaded

Abstract Cluster class

	
class jip.cluster.Cluster

	Base class for cluster integrations.

In order to add support for a cluster engine or if you want
to customize how jobs are submitted to your compute cluster, extend this
class.

The most important function is submit(), which takes a
Job instance and sends it to the compute cluster. The
methods does not return anything but is allowed to modify the submitted
job. Usually, you want to update the jobs jip.db.Job.job_id
attribute and store the remote job id.

Please not that the list(), submit(), and
cancel() methods raise a NotImplementedError by default.
update() and resolve_log() are implemented with an
empty body and no operation will happen by default.

	
cancel(job)

	Cancel the given job

	Parameters:	job (jip.db.Job) – the job instance

	
list()

	A list of all active job id’s that are currently queued or
running in the cluster.

	Returns:	list of job ids of active jobs

	Return type:	list of string

	
resolve_log(job, path)

	Resolve cluster specific file pattern to get the path to a log file.

Log file paths support cluster engine specific place holders and this
method takes care of resolving paths containing such patterns. For
example, Slurm used %j as a place-holder for the job id. This
method resolves those cluster specific place-holders to return the full
path to the log file.

	Parameters:	
	job (jip.db.Job) – the job instance

	path (string) – log file name

	Returns:	resolved log file replacing any placeholders

	
submit(job)

	Implement this method to submit jobs to the remote cluster.

Implementation are allowed and encouraged to modify the job instance.
Usually, you want to update the jobs jip.db.Job.job_id
attribute and store the remote job id.

Please note that the Jobs extra field contains an array of
additional parameters that are compatible with the cluster. The array
of parameters should be passes as is to the command used for job
submission.

NOTE that you can get the command that should be send to the
cluster using jip.db.Job.get_cluster_command()! Please
do NOT try to send the Jobs command directly. Job execution
has to go through JIP in order to provide all functionality.

	Parameters:	job (jip.db.Job) – the job

	Raises SubmissionError:

		if the submission failed

	
update(job)

	Called during job execution to update a job and
set properties that are cluster specific, i.e. the hosts
list.

	Parameters:	job (jip.db.job) – the job

Exceptions

	
exception jip.cluster.SubmissionError

	This exception is raised if a job submission failed.

	
exception jip.cluster.ClusterImplementationError

	Exception raised in case the cluster class could not be loaded

Implementations

	
class jip.cluster.Slurm

	Slurm extension of the Cluster implementation.

The Slurm implementation sends jobs to the cluster using
the sbatch command line tool. The job parameter are passed
to sbatch as they are, but please note that:

	max_mem is passed as –mem-per-cpu

	queue is used as the Slurm partition parameter

	priority is used as the Slurm QOS parameter

The implementation supports a slurm configuration block in the
JIP configuration, which can be used to customize the paths to the
commands used (sbatch, scancel, and squeue. You can enable
and configure the Slurm integration with a JIP configuration like this:

{
 "cluster": "jip.cluster.Slurm",
 "slurm": {
 "sbatch": "/path/to/sbatch",
 "squeue": "/path/to/squeue",
 "scancel": "/path/to/scancel"
 }
}

Note

By default the implementation assumed that the commands are
available in your PATH and if that is the case,
you do not have to explicitly configure the paths to the
commands.

	
class jip.cluster.SGE

	SGE extension of the Cluster implementation.

The SGE submission can be configured using the global jip configuration.
The implementation looks for a dictionary sge and supports the
following settings:

	
	threads_pe the name of the parallel environment used to submit

	multi-threaded jobs

	qsub path to the qsub command

	qstat path to the qstat command

	qdel path to the qdel command

	mem_limit the name of the resource used to specify the memory
limit. The default is virtual_free. The parameter construction
looks like this: -l <mem_limit>=<value> and the value is the
specified memory limit in MB.

	time_limit the name of the resource used to specify the time
limit. The default is s_rt. The parameter construction
looks like this: -l <time_limit>=<value> and the value is
the maximum time in seconds.

You do not have to specify the command options if the commands are
available in your path, but the threads_pe option has to be specified
to be able to submit multi-threaded jobs.

Parallel jobs submissions are handles using the jobs threads, tasks,
and environment fields. Note that there is currently no support to
specify how parallel jobs are distributed through out a set of nodes. This
depends on the configuration of the queue and parallel environment.
If you specify tasks, this takes precedence over threads and will be
used as the parameters for the parallel environment. This is how
the -pe parameter will be constructed:

-pe <environment> <tasks|threads>

	
class jip.cluster.PBS

	PBS/Torque extension of the Cluster implementation.

The PBS submission can be configured using the global jip configuration.
The implementation looks for a dictionary pbs and supports the
following settings:

	qsub path to the qsub command

	qstat path to the qstat command

	qdel path to the qdel command

You do not have to specify the command options if the commands are
available in your path.

Parallel jobs are allocated using -l nodes=<N>:ppn=<M> where N is
the number of nodes and M is the jobs tasks_per_node, tasks, or
threads, checked in this order for a value > 0. N will be set to
1 by default.
Submitting multi threaded jobs can be achieved simply by specifying the
number of threads. The job will request a single node with the M cpus
for the job.
In order to submit MPI jobs, you have to specify the number of nodes
explicitly. The number of mpinodes is then N*M.

	
class jip.cluster.LSF

	LSF extension of the Cluster implementation.

The LSF submission can be configured using the global jip configuration.
The implementation looks for a dictionary lsf and supports the
following settings:

	bsub path to the bsub command

	bjobs path to the bjobs command

	bkill path to the bkill command

	limits specify either KB, MB, GB depending on how your
LSF instance is interpreting memory limits (LSF_UNIT_FOR_LIMITS).
By default we assume that memory limits are specified in KB.

You do not have to specify the command options if the commands are
available in your path.

Parallel jobs are submitted using the -n options to specify the number
of threads/cpus requested. First, the jobs tasks are checked and used
as N. If no tasks as specified, the jobs threads are used. In case you
specified the jobs threads, the job is submitted to a single node using
-R span[hosts=1]. If you specify no tasks_per_node exlicitly, but a
number of nodes, the number of hosts requested is adjusted accordingly. If
tasks_per_node are specified, this takes precedence and the job is
submitted using -R span[ptile=M] where M is the number of
tasks_per_node.

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.configuration

Manage the JIP configuration.

The JIP command line tools and the JIP API load it’s default configuration
from disk. Three locations are checked by default for jip.json file. The
folder that contains the jip executable, the JIP_CONFIG environment
variable, and the current users $HOME directory. If exists, the
configuration next to the jip executable is loaded first and the users
configuration can extend it.

An instance of the loaded configuration is exposed in the jip main module:

>>> import jip
>>> assert jip.config is not None

The Config object provides general accessors in a dictionary fashion
to the jip configuration by also allows dotted access:

>>> import jip
>>> assert jip.config['jip_path'] == jip.config.jip_path

	
class jip.configuration.Config(_config=None)

	Wrapper around the JIP configuration that allows
dotted access to the configuration. Please note that
the dotted access works if you request it as a single key:

>>> c = Config()
>>> print c['profiles.default']
{}

But it will not work recursively through all attribute (
c.profiles.default will raise an exception)

	
get(name, default=None)

	Get a value from the configuration

	Parameters:	
	name – the key name

	default – default value returned if value does not exist

	Returns:	value in configuration or default value

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.db

JIP jobs that are submitted to a compute cluster are stored in
a Database that is accessible for all running jobs. This is the current
way how jobs can populate their state.

JIP uses SQLAlchemy [http://www.sqlalchemy.org/] as an abstraction layer to
the database. By default, a user specific sqlite database is used to store
the data, but you can use any valid database URL in your configuration.

This module contains a few helper functions that to be able to create a
database session, and the main :class:Job class that is used as a container
to store jobs in the database.

Database access

	
jip.db.init(path=None, in_memory=False, pool=None)

	Initialize the database.

This takes a valid SQLAlchemy database URL or a path to a file
and creates the database. If a file path is given, a sqlite database
is created.

	Parameters:	
	path – database url or path to a file

	in_memory – if set to True, an in-memory database is created

	
jip.db.get(job_id)

	Get a fresh copy of the given job by id and return None if the
job could not be found.

	Parameters:	job_id – the job id

	Returns:	the job instance or None

	
jip.db.query(job_ids=None, cluster_ids=None, archived=False, fields=None, pipeline_name=None)

	Query the the database for jobs.

You can limit the search to a specific set of job ids using either the
job ids or the remote cluster ids. If none are specified, all jobs are
queried.

By default the search is limited to non-archived jobs. You can set the
archived parameter to True to query only archived jobs or to None
to query both.

In addition, you can use the fields paramter to limit the fields that
are retrieved by the query for each job. By default, all fields are
retrieved.

	Parameters:	
	job_ids – iterable of job ids

	cluster_ids – iterable of cluster ids

	archived – set to True to query archived jobs and to None to query
all jobs

	fields – list of field names that should be retirieved

	pipeline_name – name of the pipeline that should be retirieved

	Returns:	iterator over the query results

	
jip.db.query_by_files(inputs=None, outputs=None, and_query=False)

	Query the database for jobs that reference the given input or output
file. NOTE that the queries are performed ONLY against absolute
paths!

By default, of both inputs and outputs are specified, an OR
queries is triggered. You can set the and_query parameter to True
to switch to AND.

	Parameters:	
	inputs – list of absolute path file names or s single file name

	outputs – list of absolute path file names or s single file name

	and_query – queries for for jobs with inputs AND outputs instead
of OR

	Returns:	iterator over all jobs that reference one of the given files

	
jip.db.get_all()

	Returns an iterator over all jobs in the database

	
jip.db.save(jobs)

	Save a list of jobs. This cascades also over all dependencies!

	Parameters:	jobs – single job or list of jobs

	
jip.db.delete(jobs)

	Delete a job or a list of jobs. This does NOT resolve any
dependencies but removes the relationships.

Note that no searched on the jobs dependencies are performed. You
have to create the job list with all the jobs you want updated manually.
You can use jip.jobs.get_subgraph() to get a full subgraph of a
job, or jip.jobs.get_group_jobs() to create a list of all jobs
that are related due to grouping or piping.

	Parameters:	jobs – single job or list of jobs

Module Methods

	
jip.db.create_session(embedded=False)

	Creates and return a new SQAlchemy session [http://docs.sqlalchemy.org/en/latest/orm/session.html#sqlalchemy.orm.session.Session]
instance and initializes the database if the DB was not initialized.

	Parameters:	embedded – start the database in embedded mode :returns: a new
SQLAlchemy session

	
jip.db.commit_session(session)

	Helper to work around the locking issues
the can happen with sqlite and session commits.

This is a very naive approach and we simply try a couple of
times to commit the session. If the commit failes, we recreate the
session and merge dirty object, add new, and delte deleted object.
The new session is then returned.

	Returns:	the old session in case all went fine, other wise the new sess
is returned.

	Raises Exception:

		if retrying could not resolve the problem

	
jip.db.update_job_states(jobs)

	Takes a list of jobs and updates the job state, remote id and
the jobs start/finish dates as well as the stdout and
stderr paths.

Note that no search on the jobs dependencies are performed. You
have to create the job list with all the jobs you want updated manually.
You can use jip.jobs.get_subgraph() to get a full subgraph of a
job, or jip.jobs.get_group_jobs() to create a list of all jobs
that are related due to grouping or piping.

	Parameters:	jobs – list of jobs or single job

	
jip.db.get_current_state(job)

	Returns the current state of the job, fetched from the database.
Note that you usually don’t need to use this method. The jobs
object state, especially when just fetched from the database, is
most probably accurate. This method exists to check the job states
after job execution of long running jobs.

	Parameters:	job – the job

	Returns:	the jobs state as stored in the database

	
jip.db.get_active_jobs()

	Returns all jobs that are not DONE, FAILED, or CANCELED

	
jip.db.update_archived(jobs, state)

	Takes a list of jobs and updates the job archived flag.

Note that no search on the jobs dependencies are performed. You
have to create the job list with all the jobs you want updated manually.
You can use jip.jobs.get_subgraph() to get a full subgraph of a
job, or jip.jobs.get_group_jobs() to create a list of all jobs
that are related due to grouping or piping.

	Parameters:	jobs – list of jobs or single job

Persisted properties

JIP jobs that are submitted to the cluster are stored in a sqlite database.
The jobs are wrapped in the jip.db.Job class and the following properties
are stored in the database and are available as instance attributes if a
job is fetched from the database.

	
Job.id

	The primary job id

	
Job.job_id

	The remote job id set after submission to a remote cluster

	
Job.name

	User specified name for the job

	
Job.user

	stores the user name of the user that submitted the job

	
Job.project

	Optional user specified project name

	
Job.pipeline

	Optional pipeline name to group jobs

	
Job.path

	Absolute path to the JIP script that created this job
this is currently only set for JIP script, not for
tools that are loaded from a python module

	
Job.tool_name

	Name of the tool

	
Job.archived

	A job can be archived to be able to
hide finished jobs but keep their information. This is indicated
by this field

	
Job.temp

	This is used to mark jobs as temporary. Temporary jobs are
can be handled differently when jobs or pipeline are restarted
or a global cleanup function is called

	
Job.create_date

	Create data of the job

	
Job.start_date

	Start date of the job

	
Job.finish_date

	Finished data of the jobs

	
Job.state

	Current job state. See job states <job_states> for more information

	
Job.hosts

	optional name of the host that executes this job. This has to be set
by the cluster implementation at runtime. If the cluster implementation
does not support this, the field might not be set.

	
Job.queue

	Stores the name of the queue this job will be submitted to.
Interpretation of this field depends on the cluster implementation

	
Job.priority

	Stores the priority assigned to the job. Interpretation of this
field depends on the cluster implementation

	
Job.account

	Account information assigned to the job

	
Job.threads

	Number of threads assigned to a job. Defaults to 1

	
Job.nodes

	Number of nodes assigned to a job.
This is stored as a string in order to support node ranges.
Defaults to None

	
Job.tasks

	Number of tasks assigned to a job. Defaults to 0

	
Job.tasks_per_node

	Number of tasks per node. Defaults to 0

	
Job.environment

	Environment name (used for example as SGE parallel environment)

	
Job.max_memory

	Maximum memory assigned to a job in MB

	
Job.max_time

	Maximum wall clock time assigned to a job in Minutes

	
Job.working_directory

	The jobs working directory. This defaults to the current
working directory

	
Job.stdout

	The jobs stdout log file. This can contain
place holders like %J that are filled, for example, with the
job id to create the final path. The cluster implementation
provides a way to
resolve a path.

	
Job.stderr

	The jobs stderr log file. This can contain
place holders like %J that are filled, for example, with the
job id to create the final path. The cluster implementation
provides a way to
resolve a path.

	
Job.env

	Stores parts of the job environment
to allow clean restarts and moves of a Job
even though the users current environment setting
has changed. See create_job_env() for more
information about the environment stored by default.

	
Job.keep_on_fail

	If explicitly set to True, Job output will not be removed in a
cleanup step after a job failed or was canceled.

	
Job.command

	The fully rendered job command that will be executed by this job
NOTE that is is the final command executed buy the jobs, NOT
the command that is send to the cluster. You can get the command
send to the cluster using the py:meth:jip.db.Job.get_cluster_command
method of the job.

	
Job.interpreter

	The interpreter that will be used to run the command

	
Job.configuration

	The configuration that is used to populate the command template. This
stores a version of the tools Options instance

	
Job.pipe_targets

	Stores output files that were moved out of the configuration in order
to support a dispatcher pipe that writes to the files
in this list as well as to the stdin of other jobs

	
Job.extra

	Extra configuration stored as an array of additional parameters
passed during job submission to the cluster implementation

	
Job.dependencies

	List of “parent” jobs this job depends on

	
Job.children

	List of “child” jobs that depend on this job

	
Job.pipe_to

	List of jobs that will run in parallel with this job and this jobs stdout
stream is piped (dispatched) to the other jobs.

	
Job.pipe_form

	List of jobs that will run in parallel with this job and whose stdout
stream is piped (dispatched) into this jobs stdin

	
Job.group_to

	List of jobs that will be executed sequentially but in a single job on the
remote cluster

	
Job.group_from

	List of jobs that will be executed sequentially but in a single job on the
remote cluster

	
Job.tool

	Access the tool instance (see jip.tools.Tool) that is executed
buy this job. The tool instance will be fully populated with the
configuration stored in this job

Job Utility functions

The Job class exposes the following utility functions:

	
Job.get_pipe_targets()

	Returns a list of output files where the stdout content
of this job will be written to if the jobs output stream is also
piped to some other process.

	Returns:	list of output file or empty list

	
Job.is_stream_source()

	Returns True if this job has child jobs that receive the
output stream of this job

	Returns:	True if the job pipes its data to another job

	
Job.is_stream_target()

	Returns True if this job takes the output stream of at least
one parent as input.

	Returns:	True if this Job receives its data as a stream from another
job

	
Job.terminate()

	Terminate a currently running process that executes this job.
NOTE that this method does NOT perform any cleanup operations
or state updates, it simply terminates the underlying process.

	
Job.run()

	Execute a single job. Note that no further checks on the
job are performed and this method assumes that the jobs stream_in
and stream_out are properly connected.

	Returns:	the process

	Raises Exception:

		if the interpreter was not found

	
Job.get_cluster_command()

	Returns the command that should send to the
cluster to run this job.

	Returns:	the command send to the cluster

	
Job.validate()

	Delegates to the tools validate method and ensures absolute paths
before validation. The rule for absolute paths is that all output
options are made absolute relative to the jobs working directory.
All input options are made absolute relative to the current working
directory.

	
Job.is_done(force=False)

	Delegates to the tools validate method but also add
an additional check streamed jobs. If there are not direct output
files, this delegates to the follow up jobs.

	Parameters:	force – if True, current state is ignored and a file check is
forced

	
Job.get_output_files()

	Yields a list of all output files for the configuration
of this job. Only TYPE_OUTPUT options are considered
whose values are strings. If a source for the option
is not None, it has to be equal to this tool.

In addition, any pipe_targets are yield as well as the configuraiton
might already been changed to stream.

	Returns:	list of output files

Job states

JIP jobs can take one of the following states.

	
jip.db.STATE_HOLD = 'Hold'

	Job is submitted but on hold

	
jip.db.STATE_QUEUED = 'Queued'

	Job is submitted to the compute cluster and is queued for execution

	
jip.db.STATE_RUNNING = 'Running'

	Job is currently running

	
jip.db.STATE_DONE = 'Done'

	Job execution successfully completed

	
jip.db.STATE_FAILED = 'Failed'

	Job execution failed

	
jip.db.STATE_CANCELED = 'Canceled'

	Job was canceled by the user

The Job class

	
class jip.db.Job(tool=None)

	The JIP Job class that represents a jobs that is stored in the
database.

A job can be referenced by its intername primary id, which is
database specific, and its external job_id, which is set in case
the job is submitted to a compute cluster.

In addition to the id and the optional job_id, the cob consists
of a set of properties that wrap around general features of the job,
like number of threads or max_memory or a limiting wall clock time, the
job instance hold the current job state, messages and refernces to
upstream dependencies.

	
get_cluster_command()

	Returns the command that should send to the
cluster to run this job.

	Returns:	the command send to the cluster

	
get_input_files()

	Yields a list of all input files for the configuration
of this job. Only TYPE_INPUT options are considered
whose values are strings. If a source for the option
is not None, it has to be equal to this tool.

	Returns:	list of input files

	
get_output_files()

	Yields a list of all output files for the configuration
of this job. Only TYPE_OUTPUT options are considered
whose values are strings. If a source for the option
is not None, it has to be equal to this tool.

In addition, any pipe_targets are yield as well as the configuraiton
might already been changed to stream.

	Returns:	list of output files

	
get_pipe_targets()

	Returns a list of output files where the stdout content
of this job will be written to if the jobs output stream is also
piped to some other process.

	Returns:	list of output file or empty list

	
is_done(force=False)

	Delegates to the tools validate method but also add
an additional check streamed jobs. If there are not direct output
files, this delegates to the follow up jobs.

	Parameters:	force – if True, current state is ignored and a file check is
forced

	
is_stream_source()

	Returns True if this job has child jobs that receive the
output stream of this job

	Returns:	True if the job pipes its data to another job

	
is_stream_target()

	Returns True if this job takes the output stream of at least
one parent as input.

	Returns:	True if this Job receives its data as a stream from another
job

	
restore_configuration()

	Modifies the tools configuration to the state before any
options were changed to support pipes.

	Returns:	original configuration

	Return type:	jip.options.Options

	
run()

	Execute a single job. Note that no further checks on the
job are performed and this method assumes that the jobs stream_in
and stream_out are properly connected.

	Returns:	the process

	Raises Exception:

		if the interpreter was not found

	
terminate()

	Terminate a currently running process that executes this job.
NOTE that this method does NOT perform any cleanup operations
or state updates, it simply terminates the underlying process.

	
validate()

	Delegates to the tools validate method and ensures absolute paths
before validation. The rule for absolute paths is that all output
options are made absolute relative to the jobs working directory.
All input options are made absolute relative to the current working
directory.

	
account

	Account information assigned to the job

	
additional_options

	Stores a set of additional input options that are used in template
rendering but are not liked in the configuration of this job

	
archived

	A job can be archived to be able to
hide finished jobs but keep their information. This is indicated
by this field

	
command

	The fully rendered job command that will be executed by this job
NOTE that is is the final command executed buy the jobs, NOT
the command that is send to the cluster. You can get the command
send to the cluster using the py:meth:jip.db.Job.get_cluster_command
method of the job.

	
configuration

	The configuration that is used to populate the command template. This
stores a version of the tools Options instance

	
create_date

	Create data of the job

	
dependencies

	General job dependencies dependencies

	
env

	Stores parts of the job environment
to allow clean restarts and moves of a Job
even though the users current environment setting
has changed. See create_job_env() for more
information about the environment stored by default.

	
environment

	Environment name (used for example as SGE parallel environment)

	
extra

	Extra configuration stored as an array of additional parameters
passed during job submission to the cluster implementation

	
finish_date

	Finished data of the jobs

	
hosts

	optional name of the host that executes this job. This has to be set
by the cluster implementation at runtime. If the cluster implementation
does not support this, the field might not be set.

	
id

	The primary job id

	
in_files

	input file references

	
interpreter

	The interpreter that will be used to run the command

	
job_id

	The remote job id set after submission to a remote cluster

	
keep_on_fail

	If explicitly set to True, Job output will not be removed in a
cleanup step after a job failed or was canceled.

	
max_memory

	Maximum memory assigned to a job in MB

	
max_time

	Maximum wall clock time assigned to a job in Minutes

	
name

	User specified name for the job

	
nodes

	Number of nodes assigned to a job.
This is stored as a string in order to support node ranges.
Defaults to None

	
on_success

	embedded pipelines

	
out_files

	output file references

	
path

	Absolute path to the JIP script that created this job
this is currently only set for JIP script, not for
tools that are loaded from a python module

	
pipe_targets

	Stores output files that were moved out of the configuration in order
to support a dispatcher pipe that writes to the files
in this list as well as to the stdin of other jobs

	
pipeline

	Optional pipeline name to group jobs

	
pipeline_name

	Optional pipeline user defined name to differentiate pipelines

	
priority

	Stores the priority assigned to the job. Interpretation of this
field depends on the cluster implementation

	
project

	Optional user specified project name

	
queue

	Stores the name of the queue this job will be submitted to.
Interpretation of this field depends on the cluster implementation

	
start_date

	Start date of the job

	
state

	Current job state. See job states <job_states> for more information

	
stderr

	The jobs stderr log file. This can contain
place holders like %J that are filled, for example, with the
job id to create the final path. The cluster implementation
provides a way to
resolve a path.

	
stdout

	The jobs stdout log file. This can contain
place holders like %J that are filled, for example, with the
job id to create the final path. The cluster implementation
provides a way to
resolve a path.

	
tasks

	Number of tasks assigned to a job. Defaults to 0

	
tasks_per_node

	Number of tasks per node. Defaults to 0

	
temp

	This is used to mark jobs as temporary. Temporary jobs are
can be handled differently when jobs or pipeline are restarted
or a global cleanup function is called

	
threads

	Number of threads assigned to a job. Defaults to 1

	
tool

	Get the tool instance that is associated with this job. If
the tool is not set, it will be loaded using the jip.find()
function

	
tool_name

	Name of the tool

	
user

	stores the user name of the user that submitted the job

	
working_directory

	The jobs working directory. This defaults to the current
working directory

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.executils

The module contains the classes and methods that are used to
execute jobs and handle streams of data between jobs.

Note

Usually you do not have to interact with this module directly. The
jip.jobs.run() method deals with the construction of the pipe
graphs for you.

A job group is a set of jobs that have to be executed together because data is
piped between the jobs. We call set of jobs and their dependencies a dispatch
graph. These graphs are created using this module. With such a graph the
following scenarios can be resolved.

	Single jobs:

	A dispatch graph can consist of a single node that wraps a single job
without any dependencies. In such case no pipelining and no redirection
will happen.

	Direct pipes:

	Given two jobs A and B, a direct pipe is used between the process for
A and the process for B. In addition, if A writes an output file
in addition to a direct pipe to B, this is handled by the dispatcher.

	Fan out:

	Given three jobs, A, B, and C, where A’s output piped to both B
and C in parallel.

The pipes are resolved using a disaptcher graph, wich
can be created using the create_dispatcher_graph()
function. The functions returns a sorted list of
jip.executils.DispatcherNode instances. The dispatcher nodes are
executable units that can be started with their run methods. They will
run asynchroniously and you have to use the nodes wait method to wait
for termination.

	
class jip.executils.DispatcherNode(job=None)

	Node element of a dispatcher graph that handles pipes between jobs.
A dispatcher node wraps around a single job in a dispatcher graph and
is able to execute the job and wait for its termination.

	
run(profiler=False)

	Run the job wrapped but this node.

	Parameters:	profiler – enable job profiling

	
wait()

	Blocks until this nodes process is terminated and returns
True if the process terminated with 0.

	Returns:	True if the job finished successfully

	
jip.executils.create_dispatcher_graph(job, _nodes=None)

	Create a dispatcher graph for a given job. If the job does not
have any pipe targets, a list with a single dispatcher node is returned,
otherwise the dispatching graph is created from all the pipe target job.

	Parameters:	job – the job

	Type:	jip.db.Job

	Returns:	list of dispatcher nodes

	Return type:	list of jip.executils.DispatcherNode instances

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.jobs

Job utilities that cover basic pipeline graph traversals and
wrappers around common actions.

JIP pipelines consist of a set of jip.db.Job instances that might be
interconnected through dependencies. The jobs can be executed either locally or
on a compute cluster.

The jobs module provides the essential helper functions to create jobs from
tools and pipelines. In addition, this module contains the functions to perform
the most basic actions on jobs and sort and traverse a set of jobs.

Job creation

JIP jobs are always created from jip.pipelines.Node instances, but
this module contains a helper function to convert tools or pipeline into a set
of jobs.

Pipeline nodes contain all the base informations that is needed to create a
jip.db.Job. You can use py:func:~jip.jobs.from_node to create a
single job instance from a node. This method is exposed so you can change to
pipeline are translated into jobs, but the most commonly used function to
create a set of jobs is create(). It takes either a tool
or pipeline instance and returns a set of jobs.

In addition to the create() method,
check_output_files() can and should be used on a set of jobs
to ensure that no output file is created by multiple jobs.

	
jip.jobs.from_node(node, env=None, keep=False)

	Create and return a jip.db.Job instance from a
Node.

A dictionary with the job environment can be passed here to avoid creating
the environment for each job.

	Parameters:	
	node (jip.pipelines.Node) – the node

	env – the environment stored for the job. If None, this will be
generated.

	keep (bool) – keep the job output on failure

	Returns:	the created job

	Return type:	jip.db.Job

	
jip.jobs.create_jobs(source, args=None, excludes=None, skip=None, keep=False, profile=None, validate=True, profiler=False)

	Create a set of jobs from the given tool or pipeline.
This expands the pipeline and creates a job per pipeline node.

You can specify a list of excludes. The list must contain job names. All
jobs with these names will be excluded. This also covered all child jobs
of excluded job, effectively disabling the full subgraph that contains
the excluded node.

After all jobs are created, they are validated and a ValidationError is
raised if a job is not valid.
Please note that the output files of the jobs are not checked automatically.
You might want to call check_output_files() after
you created all your jobs.

	Parameters:	
	source (jip.pipelines.Pipeline or jip.tools.Tool) – a pipeline or a tool

	args – options dictionary of arguments that is applied
to tool instances

	excludes – excludes nodes by name. This removed the node and the
full subgraph after the node

	skip – skip the node. This does not touch the subgraph but tries
to connect the nodes input with the nodes output before the
node is removed

	keep – keep the jobs output on failure

	profile – default job profile that will be applied to all jobs

	validate – set this to False to disable job validation

	profiler – set to True to enable the job profiler

	Raises:	jip.tools.ValueError if a job is invalid

	
jip.jobs.create_executions(jobs, check_outputs=True, check_queued=True, save=False)

	Return a list of named tuples that reference jobs that can be executed
in the right order. The named tuples yield by this generator have the
following properties:

	name

	a joined name created for each job group

	job

	the Job instance that can be submitted or
executed.

	completed

	boolean that indicates whether the job (and therefore all jobs
in the job group) is in “Done” state and marked as completed.

If you need to execute a pipeline, you can use this in conjunction with
create_jobs() to yield a list of jobs that you might want to
execute or submit:

>>> p = jip.Pipeline()
>>> files = p.bash("ls")
>>> count = p.bash("wc -l", input=files)
>>> p.context(locals())
>>> jobs = create_jobs(p)
>>> for r in create_executions(jobs):
... assert r.completed == False
... assert r.job is not None
... assert r.name == 'files|count'
>>>

	Parameters:	
	jobs – list of input jobs

	check_outputs – if True, duplicated output file names are checked
and a ValidationError is raised if duplications
are detected

	save – if True, all jobs are added to a new session and the
session is committed if no exception occurs

	Returns:	list of named tuples with name, job, and done properties

	Raises ValidationError:

		if output file checks are enabled and duplications
are detected

	
jip.jobs.check_output_files(jobs)

	Ensures that there are no output file duplication in the given set
of jobs and raises a ValidationError if there are.

	Parameters:	jobs – list of jobs

	Raises ValidationError:

		if duplicated output files are found

	
jip.jobs.check_queued_jobs(jobs, active_jobs=None)

	Check if, for any of the given job, there are queued or running
jobs that create the same output files. If that is the case, a
ValidationError is raised.

	Parameters:	
	jobs – the list of jobs to check

	active_jobs – list of jobs to check against. If not specified,
the database is queried for all active jobs

	Raises ValidationError:

		if there is a queued or running job that creates
the same output as one of the jobs in the given
list of jobs

Job actions

The following methods can be used to perform basic actions on a single job.
Please note that some of the methods can not be called in an arbitrary order
on a set of jobs. For example, submit() must be called with
jobs sorted in topological order to ensure that all parent jobs are submitted
before any child jobs. You can use the topological_order()
generator to ensure job order. For example:

for job in jip.jobs.topological_order(jobs):
 jip.jobs.submit(job)

Here, we ensure the topological order when jobs are submitted.

Although all of the action method take a single job instance, note that
cancel() effects also dependant jobs. If you cancel a job,
the job itself and recursively all jobs that depend on the canceled job are
effected.

Please also note that some of the action methods provide a silent parameter.
If it is set to False, the methods will print status information to stdout.

Jip jobs that are send to a cluster are stored in a database. The database
stores the job runtime information and calling any of the action methods might
effect the database state of a job. Please note that, except for
delete() and run_job(), none of the action
methods interact with the database or a database session directly. It the
callers responsibility to commit changed to the database after an action method
is called.

As mentioned above, the only exception to this rule are the
delete() and run_job() methods, which take
a database session.

	
jip.jobs.submit_job(job, clean=False, force=False, save=True, cluster=None)

	Submit the given job to the cluster. This only submits jobs that are not
DONE. The job has to be in canceled, failed, queued,
or hold state to be submitted, unless force is set to True. This will
NOT submit the child jobs. You have to submit the children
yourself and ensure you do that in proper order.

If job submission is forced and a job is in active state, the job
is canceled first to ensure there is only a single instance of the
job on the cluster.

You have to set save to True in order to save the jobs after
successful submission. This will use jip.db.create_session() to
get a session instance.

If no cluster is specified, jip.cluster.get() is used to load
the default cluster. This will raise a
jip.cluster.ClusterImplementationError in case no compute cluster is
configured.

	Parameters:	
	job – the job to be submitted

	clean – if True, the job log files will be submitted

	force – force job submission

	save – if True, job will be saved to the database

	cluster – the compute cluster instance. If None, the default
cluster will be loaded from the jip configuration

	Returns:	True if the job was submitted

	Raises jip.cluster.ClusterImplementationError:

		if no cluster could be
loaded

	
jip.jobs.run_job(job, save=False, profiler=False, submit_embedded=False, closeDB=False)

	Execute the given job. This method returns immediately in case the
job has a pipe source. Otherwise the job and all its dispatch jobs are
executed.

NOTE that the run method creates a signal handler that sets the given
job state to failed in case the jobs process is terminated by a signal.

	Parameters:	
	job (jip.db.Job) – the job to run. Note the jobs with pipe sources are ignored

	save – if True the jobs state changes are persisted in the database

	profiler – if set to True, job profiling is enabled

	submit_embedded – if True, embedded pipelines will be submitted and
not executed directly

	Returns:	True if the job was executed successfully

	Return type:	boolean

	
jip.jobs.hold(job, clean_job=False, clean_logs=False, hold_children=True)

	Hold the given job make sure its no longer on the cluster.
The function takes only jobs that are in active state and takes
care of the cancellation of any children.

	Parameters:	
	job – the job

	clean_logs – if True, the job log files will be deleted

	clean_job – if True, the job results will be removed

	silent – if False, the method will print status messages

	
jip.jobs.cancel(job, clean_job=False, clean_logs=False, cluster=None, save=False, cancel_children=True)

	Cancel the given job and make sure its no longer on the cluster.

The function takes only jobs that are in active state and takes
care of the cancellation of any children.

	Parameters:	
	job (jip.db.Job) – the job

	clean_logs – if True, the job log files will be deleted

	clean_job – if True, the job results will be removed

	cluster – if not Cluster is specified and this is the parent
job in a group, the default cluster is loaded

	save – if True, save job in database after state change

	cancel_children – set this to False to disable canceling children of
a given job

	Returns:	True if job was canceled

	
jip.jobs.delete(job, clean_logs=False, cluster=None)

	Delete the given job from the database and make sure its
no longer on the cluster. If the jobs’ state is an active state,
the job is canceled on the cluster. Job cancellation is only performed
on jobs that are no pipe_to targets. Please note also that this method
does NOT delete any dependencies, it operates ONLY on the given
job instance.

You can use jip.jobs.get_subgraph() to get a full subgraph of a
job, or jip.jobs.get_group_jobs() to create a list of all jobs
that are related due to grouping or piping.

	Parameters:	
	job (jip.db.Job) – the job to be deleted

	clean (boolean) – if True, the job log files will be deleted

	cluster – the cluster instance used to cancel jobs. If not
specified, the cluster is loaded from the configuration

	
jip.jobs.clean(job, cluster=None)

	Remove job log files.

	Parameters:	
	job (jip.db.Job) – the job to be cleaned

	cluster – the cluster instance used to resolve logs. If not
specified, the cluster instance is loaded from the
configuration

	
jip.jobs.set_state(job, new_state, update_children=True, cleanup=True, check_state=False)

	Transition a job to a new state.

The new job state is applied to the job and its embedded
children. In case the job state became CANCELED, FAILED,
or HOLD, and cleanup is not set to False, the jobs
tool is loaded and the job cleanup is performed.

The job transition takes also care of the start and finish
dates on the job and set them according to the new state.

	Parameters:	
	new_state – the new job state

	id_or_job – the job instance or a job id

	update_children – if set to False, pipe_to jobs are not updated

	cleanup – if True the tool cleanup is performed for canceled or
failed

	check_state – if True, the current jobs state is loaded from the
database, and if the new state is FAILED and
the current db state is CANCELED, the new state
becomes CANCELED. This is used to prevent jobs
that are CANCELED to get set to FAILED when
removed from a compute cluster

The job submission process uses a few other functions of this module that are
not strictly actions on a single job, but are useful to understand how
the system handles jobs specifically with respect to submission:

	
jip.jobs.create_job_env(profiler=False)

	Create a dictionary that contains the jobs’ environment.

The job environment is loaded at execution time and is available in
the process that runs the jobs command. This stores the values from the
current environment (usually the machine from which you submit your
job) and stores that information in a dictionary. The following
environment variables are stored:

	PATH

	The currently configured PATH is stored

	PYTHONPATH

	We store the python path in order to make sure that the JIP
command line utilities works as expected and the same JIP version
is loaded at job runtime.

	JIP_PATH, JIP_MODULES, JIP_LOGLEVEL, JIP_DB_LOGLEVEL

	Any local modification of the paths to search for tools or the
module search paths are stored. In addition, the current log
level is passed on to the job, which effectively allows you
to debug jip behaviour on the job level

	LD_LIBRARY_PATH

	The library path is also stored in the environment

	Parameters:	profiler – if True, JIP_PROFILER is enabled

	Returns:	dictionary that contains the job environment

	Return type:	dict

	
jip.jobs.resolve_jobs(jobs)

	Takes a list of jobs and returns all jobs of all pipeline
graphs involved, sorted in topological order. In contrast to
get_subgraph(), this first traverses up in the tree to
find all parent nodes involved.

	Parameters:	jobs – list of input jobs

	Returns:	list of all jobs of all pipeline that are touched by the jobs

Job iteration and sorting

We mentioned earlier that some of the action methods that can be called with
a job depend on the order of jobs. This is important in particular for any
method that relies on job dependencies. For example, the
submit_job() method assumed that any dependencies of a given job
are already submitted. The jip.jobs module provides a set of helper functions
that allow you to sort a list of jobs or extract certain sub-sets from a graph
of jobs.

	
jip.jobs.topological_order(jobs)

	Generator that yields the elements of the given list of jobs in
topological order. NOTE this does NOT resolve any dependencies and
only yields the jobs given as parameter

	Parameters:	jobs (list of jip.db.Job) – list of jobs

	Returns:	yields given jobs in topological order

	
jip.jobs.get_parents(jobs, _parents=None)

	Takes a list of jobs and walks up the graph for all job
to find all jobs connected to a job in the given job list but
without any incoming dependencies.

NOTE that the returned list is not sorted.

	Parameters:	jobs – list of jobs

	Returns:	list of all parent jobs

	
jip.jobs.get_pipe_parent(job)

	Check if the job has a pipe_from parent and if so return that. If
the does does not have any pipe targets, the job itself is returned.

	Parameters:	job (jip.db.Job) – the job

	Returns:	pipe source job or the job itself if no pipe parent is found

	
jip.jobs.get_subgraph(job, _all_jobs=None)

	Returns a list of all jobs that are children
of the given job, plus the given job itself. In
other words, this resolves the full subgraph of jobs that the
given job belongs to. If the given job receives piped input, the
pipe parent is used as root for the subgraph.

	Parameters:	job (jip.db.Job) – the job

	Returns:	all jobs including the given one that form a subgraph in the
execution graph where the given job is the root

	
jip.jobs.create_groups(jobs)

	Group jobs that will be executed in one step. This returns
a list of lists. Each list starts with the ‘primary’ job. This job is
the ONLY job that has to be executed. But note that when you submit jobs
to a cluster, all jobs of a group have to be submitted. Note that
the list of jobs will not be reordered. The list of groups will reflect
the ordering of the input jobs.

	Parameters:	jobs (list of jobs) – list of jobs

	Returns:	the list of groups as a list of lists of jobs

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.profiles

JIP module that handles job profiles.

A job profile contains all compute-cluster and execution related meta-data of a
job, such as the number of threads reserved for the job or the time limit.
Profiles can be named and stored in the user configuration.

In addition, hierarchical updates of profiles can be applied. For example, a
default profile can be loaded from the configuration. This profile can then be
refined by a pipeline script or command line options.

This enable you to start with a hard-coded profile in your tool
implementation and then gradually modify and change the profile when the
tool is embedded in another pipeline or from the command line at execution
or submission time.

Note

Please note that the interpretation of some of the profiles
properties depends on the cluster implementation.

The following properties are supported by a profile and can be maintained
and updated.

General properties

The following properties are considered general and usually always
used and interpreted, independent of where and how you execute the tool
or pipeline:

	name

	You can assign an arbitrary name to your profiles. This name
will be used either as a job name, if the profile is applied
to a tool, or as a pipeline name if applied to a pipeline.

	prefix

	A name prefix that is applied to all embedded jobs. This can
be useful if, in a pipeline context, you want to allow your
tool to take their own name, but you want to prefix all tools
that are part of a single pipeline.

	threads

	The number of threads or compute slots allocated by the execution.
Although this property and its interpretation also depends on
the cluster or grid implementation, this is considered a general
property that is also considered when you execute a pipeline or
tool outside of a compute grid.

	working_dir or dir

	The working directory for a job. This is initialized to the
current working directory of the process that creates the profile.

	temp

	A boolean property that you can used to mark a job as temporary.
Temporary jobs are treated specially in a pipeline execution.
You can find more information about temporary jobs in the
Pipeline documentation.

	env

	Dictionary that can be used to extend the jobs shell environment

	description

	Optional field that describes the profile and can be used to
describe custom profiles in the user configuration

Cluster/Grid specific properties

The following properties can be set or modified, but their interpretation
depends on the cluster implementation and the capabilities of the cluster:

	tasks

	Number of tasks assigned to a single job

	tasks_per_node

	If multiple nodes are reserved by a single job, this is the
number of tasks assigned to each node.

	nodes

	Number of nodes requested by the job

	queue

	The queue the job is sent to

	priority

	A priority assigned to a job

	environment

	The name of the environment assigned to a job. This is not
the shell environment, but an arbitrary name that is used, for
example, in the Sun Grid Engine implementation to identify
the parallel environment the job is submitted to.

	account

	Name of the account for this job

	mem

	The memory limit for the job. This is stored here as a string
and passed on as is to the cluster implementation

	time

	The time limit for the job. Here, the time limit is specified
as a string and passed on to the cluster implementation as is.

	out

	Path to the stdout log file for this job

	log

	path to the stderr log file for this job

	err

	path to the stderr log file for this job

	extra

	This is an array that takes additional options that are
used when the submission command is constructed.

Note

Most of the

	
class jip.profiles.Profile(name=None, threads=None, nodes=None, tasks=None, tasks_per_node=None, environment=None, time=None, queue=None, priority=None, log=None, out=None, account=None, mem=0, extra=None, profile=None, prefix=None, temp=False, _load=True, env=None, tool_name=None, working_dir=None, description=None, specs=None, _name=None, **kwargs)

	A Profile contains cluster and runtime specific information about
a job.

	
apply(job, pipeline=False, overwrite=False)

	Apply this profile to the given job.

	
apply_overwrite(job)

	Apply the profile and overwrite all settings that are set
in this profile

	
apply_to_pipeline(pipeline)

	Apply this profile to the pipeline

	Parameters:	pipeline (jip.pipeline.Pipeline) – the pipeline

	
dir

	Set the jobs working directory

	Getter:	access the jobs working directory

	Setter:	set the jobs working directory

	Type:	string

	
err

	Set the jobs error log file

	Getter:	access the jobs name

	Setter:	set the jobs name

	Type:	string

	
classmethod from_dict(data)

	Load a profile from a dictionary

	
classmethod from_file(file_name)

	Load a profile from a json file

	Parameters:	file_name – the name of the input file

	
classmethod from_job(job)

	Create a profile based on a given job. All properties
are set according to the given job, except the jobs temp state,
which will be kept unmodified.

	Parameters:	job – the job

	Returns:	new profile generated from the job

	
load(profile_name)

	Set this profiles values to the values loaded from the profile
stored under the given name. An exception is raised if no profile of
that name could be found.

	Parameters:	profile_name (string) – the name of the profile that will be loaded

	
load_args(args)

	Update this profile from the given dictionary of command line
arguments. The argument names must match the profile attributes

	
merge(master)

	Merge this profile with the given master profile.

Currently this merges the working directory of jobs

	Parameters:	master – the master profile

	
name

	Set the jobs name

	Getter:	access the jobs name

	Setter:	set the jobs name

	Type:	string

	
update(profile, overwrite=True)

	Update this profile from a given profile. All values that are
not None in the other profile are applied to this
profile

	Parameters:	
	profile (Profile) – the other profile

	overwrite – if True, value will be set regardless. Otherwise, the
new value will only be applied if the old value
is None

	
jip.profiles.get(name='default', tool=None)

	Load a profile by name. If tool is specified, the specs are
searched to the tool and if found, the specs are applied.

	
jip.profiles.get_specs(path=None)

	Load specs form default locations and then update from specs in given
path if specified.

	Parameters:	path – optional path to an additional spec file

	
jip.profiles.specs = None

	global specs

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.options

This module contains the essential parts to handle tool and pipeline
options both within the python API as well as from the command line.

The module provides access to two classes:

	jip.options.Option

	wraps a single option and its value

	jip.options.Options

	represents a set of options and provides indexed access to the
options instances

The options are typically used to represent tool and pipeline inputs, outputs,
and options. Because the JIP system needs to be able to identify which files
are consumed and which files are created by a given tool, this information is
encoded in the Option instance in their
option_type attribute. The following types are
supported:

	
jip.options.TYPE_INPUT

	Option type to identify input options

	
jip.options.TYPE_OUTPUT

	Option type to identify output options

	
jip.options.TYPE_OPTION

	Option type to identify general options

The Options instance can be created manually or auto-generated from
either a string or an argparse.ArgumentParser instance. The string parsing
is done using a slightly modified version of the docopt [http://docopt.org]
library in order to support input and output blocks. You can use the
Options.from_docopt() function to parse a docopt string:

import sys
from jip.options import Options

opts = Options.from_docopt('''
My tool description

Usage:
 tool -i <input> -o <output> [-b]

Inputs:
 -i, --input <input> The input
 [default: stdin]

Outputs:
 -o, --output <output> The output
 [default: stdout]

Options:
 -b, --boolean A boolean flag
''')

assert opts['input'].raw() == sys.stdin
assert opts['output'].raw() == sys.stdout

In this example, we created all three option blocks, Inputs:, Outputs:,
and Options: explicitly. The parser also detects inputs and output by their
option name and if their default value is set to sys.stdin or
sys.stdout.

The same options can also be created using pythons
argparse.ArgumentParser:

import argparse
parser = argparse.ArgumentParser("tool")
parser.add_argument('-i', '--input', default=sys.stdin)
parser.add_argument('-o', '--output', default=sys.stdout)
parser.add_argument('-b', '--boolean', action="store_true")

opts = Options.from_argparse(parser, inputs=['input'], outputs=['output'])
assert opts['input'].raw() == sys.stdin
assert opts['output'].raw() == sys.stdout

We again specify the inputs and outputs explicitly, but this time in the call
to the from_argparse method. There is currently no way other than the
option name and its default value to indicate inputs and output using
argparse other than specifying them explicitly. If you are using the JIP
library as an API, it likely that you define your tool functions or classes
using the decorators. These all allow you to specify the
input and output options explicitly.

	
class jip.options.Options(source=None)

	Container instance for a set of options.

The options container offers a set of static method to create Options
instances from docopt options or arparse instances. In addition to
creation, the options instance allows for simplified access to options
using the options name, for example:

input = options['input']

This will assign the jip.options.Option instance to input.
The options instance is also iterable in order to quickly go through the
option instances, i.e.:

for o in options:
 print o.name

In addition, get_default_input() and
get_default_output() can be used to access the default options
configured for input and output.
If you are interested in a specify option type, you can use the
get_by_type() function to get an iterator over the options of the
specified type:

for inopt in options.get_by_type(TYPE_INPUT):
 print inopt.name

Option values can also be set directly using the dictionary notation. For
example:

>>> opts = Options()
>>> opts.add_input('input')
<no-source>.input[]
>>> opts['input'] = "data.txt"

This assigned the value data.txt to the input option.

If a source is specified, this becomes the source instance
for all options added.

	
__init__(source=None)

	

	
add(option)

	Adds an options to the options set.
The source is applied to an option added.

	Parameters:	option (Option) – the option to add to the set

	
add_input(name, value=None, nargs=None, hidden=True, **kwargs)

	Add additional, hidden, input option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
add_option(name, value=None, nargs=None, hidden=True, type='option', **kwargs)

	Add additional, hidden, option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
add_output(name, value=None, nargs=None, hidden=True, **kwargs)

	Add additional, hidden, output option. The default
value for this option is None, but you can pass a value
here that will be set after the option is added.

If no value is specified, the option by default is a single value
option. You can overwrite this by specifying the nargs argument.

By default, the new option is hidden and will not be listed in the
default options printer. You can overwrite this with the hidden flag.

	Parameters:	
	name (string) – the name of the new option

	value – optional value applied to the option

	nargs – multiplicity specifier. If this is not set explicitly
but a value is provided, the value is inspected to
guess a multiplicity.

	hidden – set this to False to create a visible option

	kwargs – all additional keyword arguments are passed to the
new option as they are

	Returns:	the added option

	Return type:	jip.options.Option

	
classmethod from_argparse(parser, inputs=None, outputs=None, source=None)

	Create Options from a given argparse parser.

The inputs and outputs can be set to options names to
set a specific type.

If no input or output options are specified explicitly, options
named input are assigned as the default input and options
named output are assigned as default output output.

In addition, the default types are checked and options where the
default points to stdin or stdout are given the type
TYPE_INPUT and TYPE_OUTPUT respectively.

	Parameters:	
	parser – the argparse instance

	inputs – list of names of TYPE_INPUT options

	output – list of names of TYPE_OUTPUT options

	Returns:	a new Options instance

	Return type:	Options

	
classmethod from_docopt(doc, inputs=None, outputs=None, source=None)

	Create Options from a help string using the docopt parser

The inputs and outputs can be set to options names to
set a specific type.

If no input or output options are specified explicitly, options
named input are assigned as the default input and options
named output are assigned as default output output.

In addition, the default types are checked and options where the
default points to stdin or stdout are given the type
TYPE_INPUT and TYPE_OUTPUT respectively.

Here is an example of how an Options instance can be created from
a doc string:

Options.from_docopt(''' usage:
 tool -i <input>
options:
 -i, --input <input> the input option
''')

	Parameters:	
	parser – the argparse instance

	inputs – list of names of TYPE_INPUT options

	output – list of names of TYPE_OUTPUT options

	Returns:	a new Options instance

	Return type:	Options

	
get_by_type(options_type)

	Generator function that yields all
options of the specified type. The type
should be one of TYPE_OUTPUT, TYPE_INPUT or
TYPE_OPTION.

	Parameters:	options_type (string) – the type

	Returns:	generator of all options of the specified type

	Return type:	list of Option

	
get_default_input()

	Returns the first input option that is found in the list of options
that has a non-null value. If no input option is found, a
LookupError is raised

	Returns:	the default input option

	Return type:	Option

	Raises LookupError:

		if no default option was found

	
get_default_output()

	Returns the first output option that is found in the list of options
that has a non-null value. If no output option is found, a
LookupError is raised

	Returns:	the default output option

	Return type:	Option

	Raises LookupError:

		if no default option was found

	
glob_inputs()

	Resolve file wildcards on input options.

	
help()

	Returns the help message
:returns: the help message
:rtype: string

	
make_absolute(path)

	Render input and output options absolute.
Output options are made absolute relative the given path and
input options are made absolute relative to the current working
directory

	Parameters:	path (string) – the parent path for output options

	
parse(args)

	Parse the given arguments and full the options values.
A ParserException is raised if help is requested (-h or –help)
or if an option error occurs. The exceptions error message
is set accordingly.

The given args list should contain all command line argument to
parse without the program name.

	Parameters:	args (list) – the arguments

	
to_cmd()

	Render all non hidden options to a single command line
representation. For example:

>>> from jip.options import Options
>>> opts = Options()
>>> opts.add_input("input", short="-i", value="data.in", hidden=False)
<no-source>.input['data.in']
>>> opts.add_output("output", short="-o", value="data.out", hidden=False)
<no-source>.output['data.out']
>>> assert opts.to_cmd() == '-i data.in -o data.out'

	Returns:	command line representation of all non-hidden options

	Return type:	string

	
to_dict(raw=False)

	Convert the options to a read-only dictionary pointing to the
raw values of the options.

	Returns:	read-only dictionary of the options raw values

	
usage()

	Returns the usage message

	Returns:	usage message

	Return type:	string

	
validate()

	Validate all options

	
class jip.options.Option(name, short=None, long=None, type=None, nargs=None, default=None, value=None, required=False, streamable=None, hidden=False, join=' ', option_type='option', const=None, sticky=False)

	This class manages a single option of a JIP Tool.

The option instance itself it usually wrapped and accessed through a
Options instance, and provides the basic
functionality to work with its value and its command line representation.

The most commonly used properties of an option are its name and its
value. In addition the option instance carries various other
information, for example,the option type, its value type, its multiplicity.

Internally, each instance can carry a set of values, independent of its
multiplicity (nargs) setting. In fact, option value are always stored
in a list. This is used in pipeline extensions and expansions and you
should keep it in mind when accessing the option value.

Access can be done in three different ways. The most prominent one is the
options get() method, which returns a string representation of the
options value. Please read the methods description to understand the
translation rules.

The Options constructor will automatically translate a value set to the
string stdin, stdout or stderr to the corresponding system
streams.

	Parameters:	
	name – the options name

	short – the short option name, i.e, -h

	long – the long options name, i.e., --help

	type – the values type, for example, int or string

	nargs – number of supported arguments. Supports 0 for boolean
options, 1 for options that take a single value, +
for options that take at least on argument, and * for
options that take none or more arguments.

	default – the options default value

	value – the options initial value

	required – set to True to make the option non-mandatory

	hidden – mark the option as hidden

	join – specify a string that is used to join list of elements
for string representations

	streamable – enable streams for this option

	option_type – the option type, one of TYPE_INPUT,
TYPE_OUTPUT or TYPE_OPTION

	sticky – mark the option as sticky. Sticky option values are
ignored during a cleanup

	
append(value)

	Append a value to the list of option values.

	Parameters:	value – the value to append

	
check_file()

	Validate this option and check that, if the options is not
set through a dependency, all string values represent existing
files.

	Raises ValueError:

		if an expected file is not found

	
check_files()

	Alias for check_file()

	
copy()

	Create a clone of this option instance

	Returns:	clone of this option

	Return type:	Option

	
expand()

	Returns the raw values of the list but expanded to contain
options multiple times in case the _value contains options.

This can be used in fanout mode for pipeline nodes where you need
to resolve the full list of values n times.

	Returns:	list of expanded values

	
get(converter=<type 'str'>)

	Get a representation for the current value, default to string
representation

The get method translates the current value in the following way:

	if the options nargs is set to 0 and the option
represents a boolean flag, an empty string is returned

	if the options nargs is set to 1 and the option should
contains a single value but contains more than one value, a
ValueError is raised.

	if the options nargs allows for a list of values, each
value is resolved independently and the list is joined using the
options join string.

	if the option is required and no value is set, an
ParseException is raised.

Option values are resolved before returned and boolean values
and file streams are resolved to an empty string. All other values
are resolved to their string representations.

	Parameters:	converter – the converter function, defaults to str

	Returns:	string representation of the current option value

	Return type:	string

	Raises:	
	ValueError – if the option contains more elements that allowed

	ParseException – if the option is required but no value is set

	
get_opt()

	Return the short or long representation of this option, starting
with the short option. If that is not set, the options long name
is returned.

	Returns:	options short or long name

	Return type:	string

	
glob()

	Resolve wildcards used in this option. The results is sorted
by name and applied as values to this option.

	
is_dependency()

	Returns true if this options value is coming from another tool
execution, hence this option depends on another option and the
tool containing this option depends on another tool.

	Returns:	True if this option has a dependency to another option
from another tool

	Return type:	boolean

	
is_list()

	Return true if this option takes lists of values.

	Returns:	True if this option accepts a list of values

	
is_stream()

	Return true if the current value is a stream or a list of
streams.

	Returns:	True if current value is a stream

	
make_absolute(path)

	Converts the option values to absolute paths relative to the given
parent path.

	Parameters:	path (string) – the parent path

	
raw()

	Get raw value(s) wrapped by this options.

No require checks are performed.

If the options carries a single value and nargs == 1, this first
value in the options list is returned. Otherwise the list of values
is returned.

	Returns:	the raw options value depending on nargs a single value
or a list of values

	
set(new_value)

	Set the options value

	Parameters:	new_value – the new value

	
to_cmd()

	Return the command line representation for this option. An
exception is raised if the option setting is not valid. For example:

>>> o = Option("input", "-i", "--long", value="data.csv")
>>> assert o.to_cmd() == '-i data.csv'

Options with False or None value are represented as empty string.

	Returns:	the cull command line representation of this option

	
validate()

	Validate the option and raise a ValueError if the option
is required but no value is set.

	Raises ValueError:

		if the option is required but not set

	
value

	The list of values wrapped by this option.

The list of values is rendered and resolved on access type. For this,
the options render_context must be set. This context is then used
to render any string value as a template.

	Getter:	Returns the fully rendered and resolved list of current values

	Setter:	Set the current option value

	Type:	single object or list of objects

	
exception jip.options.ParserException(message, options=None, status=0)

	Exception raised by the Options argument parser

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.pipelines

The JIP Pipeline module contains the classs and functions
used to create pipeline graphs

	
class jip.pipelines.Edge(source, target)

	An edge in the pipeline graph connecting source and target nodes.
The edge has optional information about the jip.options.Options that
are connected through this edge.

The edge carries a set on links. Links are tuples of the form
(source_option, target_option, streamable).

In addition, the edges _group flag indicates that the two nodes linked
by the edge should form a job group.

	
add_link(source_option, target_option, allow_stream=True)

	Create an option link between the source option and the target
options. This also checks that the source_option source is the
same as the edges source._tool and the target_option source is
the same as the edges target._tool

	Parameters:	
	source_option (jip.options.Option) – the source option

	target_option (jip.options.Option) – the target option

	
get_streaming_link()

	Returns the first link that is set to streaming

	
has_streaming_link()

	Returns true if a least one link is set to streaming

	
remove_links()

	Iterate the links associated with this edge and make sure that
their values are unset in the target options.

	
class jip.pipelines.Job(pipeline=None, **kwargs)

	Container class that wraps job meta-data.

The pipeline job extends the general jip.profiles.Profile, and
extends it in a way that you can create new pipeline nodes from the job.
Those nodes will then hold a reference to the profile and all customization
on the profile will be applied to the node.

	
bash(command, **kwargs)

	Create a new bash job.

	Parameters:	
	command – the bash command

	kwargs – keyword arguments passed on the bash job

	Returns:	the newly created node

	Return type:	Node

	
name

	Set the jobs name

	Getter:	access the jobs name

	Setter:	set the jobs name

	Type:	string

	
run(*args, **kwargs)

	Delegates to Pipeline.run() and runs the specified tool
using this job environment configuration

	Parameters:	
	args – args passed on to the pipeline run method

	kwargs – kwargs passed on to the pipeline run method

	Returns:	the newly created node

	Return type:	Node

	
class jip.pipelines.Node(tool, graph, index=-1)

	A single node in the pipeline graph.

If the node is linked to a jip.tools.Tool instance, attributes are
resolved using teh tools options and the jip.options.Option
instances are returned. This mechanism is used to automatically create
edges between tools when their options are referenced. These links are
stored on the Edge. If no edge exists, one will be created.

	
children()

	Yields a list of all children of this node

	Returns:	generator for all child nodes

	Return type:	generator for Node

	
depends_on(*args)

	Add an explicit dependency between this node and the other
node. The function accepts multiple values so you can specify multiple
parents at once.

	Parameters:	args* – all parent nodes.

	
get_incoming_link(option)

	Find a link in the incoming edges where the target option
is the given option

	Parameters:	option (jip.options.Option) – the option to search for

	Returns:	link instance for the given option or None

	
get_outgoing_link(option)

	Find a link in the outgoing edges where the source option
is the given option

	Parameters:	option (jip.options.Option) – the option to search for

	Returns:	link instance for the given option or None

	
get_stream_input()

	Returns a tuple of an options and a node, where the
options supports streams and the node is a parent node of this node. If
no such combination exists, a tuple of (None, None) will be
returned.

	Returns:	tuple of (Option, Node) where the option supports
streaming and the Node is a parent node.

	
group(other)

	Groups this not and the other node. This creates a dependency
between this node and the other nodes and enables grouping so the
two nodes will be executed in the same job. The other node is returned
so group chains can be created easily.

	Parameters:	other (Node) – the child node

	Returns other:	the other node

	
has_incoming(other=None, link=None, stream=None, value=None)

	Returns true if this node has an incoming edge where
the parent node is the given other node.
If link is specified, it has to but a tuple with the source
and the target option names. If specified the detected edge
has to carry the specified link. If stream is not None
the link is checked if its a streaming link or not.

If not other node is specified this returns True if this node
has any incoming edges.

If value is specified, the delegate value has to be equal to
the specified value.

You can use the incoming edge check like this:

node.has_incoming(other, ('output', 'input'), False, "data.txt")

This return True if the node node has an incoming edge from
the other node, the edge linkes other.output to node.input,
no stream is passed and the actual value is “data.txt”.

	Parameters:	
	other (Node) – the potential parent node

	link – optional tuple with source and target option names

	stream – boolean that ensures that the link is streaming
or not, depending on the specified value

	value – specify an optional value that is compared against the
delegated value

	Returns:	True if the edge exists

	
has_outgoing(other=None, link=None, stream=None, value=None)

	Returns true if this node has an outgoing edge where
the child node is the given other node.
If link is specified, it has to but a tuple with the source
and the target option names. If specified the detected edge
has to carry the specified link. If stream is not None
the link is checked if its a streaming link or not.

If not other node is specified this returns True if this node
has any outgoing edges.

If value is specified, the delegate value has to be equal to
the specified value

You can use the outgoing edge check like this:

node.has_outgoing(other, ('output', 'input'), False, "data.txt")

This return True if the node node has an outgoing edge to
the other node, the edge links node.output to other.input,
no stream is passed and the actual value is “data.txt”.

	Parameters:	
	other (Node) – the potential child node

	link – optional tuple with source and target option names

	stream – boolean that ensures that the link is streaming
or not, depending on the specified value

	value – specify an optional value that is compared against the
delegated value

	Returns:	True if the edge exists

	
incoming()

	Yields all incoming edges of this node

	Returns:	generator for all incoming edges

	Return type:	generator for Edge

	
job

	The nodes job profile

	Getter:	Returns the nodes job profile

	Type:	jip.pipelines.Job

	
name

	Get a unique name for this node.

The unique name is created based on the job name. If no job name
is assigned, the tool name is used. If the new node name is not
unique within the pipeline context, the nodes index is appended to
the node.

	Getter:	returns a unique name for this node

	Type:	string

	
on_success(tool=None, **kwargs)

	Create an embedded pipeline that will be submitted
or executed after this node was successfully executed. The
function returns a tuple: (pipeline, node)

	Parameters:	
	tool – the tool to run

	kwargs – option arguments for the tool

	Returns:	tuple of (pipeline, node)

	
outgoing()

	Yields all outgoing edges of this node

	Returns:	generator for all outgoing edges

	Return type:	generator for Edge

	
parents()

	Yields a list of all parent nodes

	Returns:	generator for all parent nodes

	Return type:	generator for Node

	
pipeline_name(name)

	Set the user defined name for the pipeline this node belongs to

	
set(name, value, set_dep=False, allow_stream=True, append=False)

	Set an option

	
class jip.pipelines.Pipeline(cwd=None)

	A pipeline is a directed acyclic graph of Nodes and edges

	
add(tool, _job=None)

	Add a tool or a node to the pipeline. If the given value
is not a node, it is wrapped in a new node instance and then added
to the pipeline. The newly created node is returned.

Note that the nodes uniquely map to tool instances. You can not
add the same instance twice to the pipeline. Instead, no new
node will be added and the already existing node will be returned.

	Parameters:	tool (jip.tools.Tool or Node) – the tool or node

	Returns:	the new node

	Return type:	Node

	
add_edge(source, target)

	Adds an edge between the source and the target if no
such edge exists. Otherwise the existing edge will be returned.

	Parameters:	
	source (Node or Tool) – the source node or tool instance

	target (Node or Tool) – the target node or tool instance

	Returns:	the edge between source and target

	Raises LookupError:

		if the source or target node could not be found

	
bash(command, **kwargs)

	Create a bash job that executes a bash command.

This us a fast way to build pipelines that execute shell commands. The
functions wraps the given command string in the bash tool that
is defined with input, output, and outfile. Input and
output default to stdin and stdout.

	Parameters:	
	command (string) – the bash command to execute

	kwargs – arguments passed into the context used to render the
bash command. input, output, and outfile are
passed as options to the bash tool that is used to
run the command

	Returns:	a new pipeline node that represents the bash job

	Return type:	jip.pipelines.Node

	
context(context)

	Update the global context of the pipeline and add the values
from the given context

	Parameters:	context – the context

	
edges

	Access all edges in the current pipeline graph as a list
of Edge

	Getter:	get a list of all edges

	Type:	list of Edge

	
exclude(excludes)

	Takes a list of node names and removes all nodes and their
successors from the graph.

	Parameters:	excludes (list of string) – list of node names

	
expand(context=None, validate=True, _find_dup=True, _check_fanout=True)

	This modifies the current graph state and applies fan_out
operations on nodes with singleton options that are populated with
list.
An exception is raised in case a node has more than one option that
should be expanded and the number of configured elements is not the
same.

You can specify a context that will be used additionally to resolve
template variables and references in node options. This allows you
to give the template system access to your local environment. For
example:

>>> p = Pipeline()
>>> a = "myinput.txt"
>>> p.bash('wc -l ${a}')
bash
>>> p.expand(locals())
False
>>> assert p.get("bash").cmd.get() == 'wc -l myinput.txt'

	Parameters:	
	validate – disable validation by setting this to false

	context – specify a local context that is taken into account
in template and option rendering

	
get(name)

	Find a node by tool or node name including its node index.

We search here through the node, searching for a node whose name equals
the given name. The full name consists if of the tool name and the node
index if there is are more nodes with the same name. A node index is
typically assigned and used after pipeline expansion, which means you
might have to append the correct index to the node you are looking for.

This is necessary because multi-plexing of the pipeline can not always
guarantee unique nodes names. The nodes might get duplicated based on
the input of the pipeline. Therefor a unique node index is appended to
the node name. You can expect the pipeline nodes and their names using
the nodes() method and iterate it. Printing, or calling str
will resolve the current node name.

If you assign a job name to the node, this will overwrite the node
name and will be used instead, but note that the same indexing rules
apply and if graph contains more than one node with the same name, the
node index will be appended to the node/job name.

If the index is appended, the node name always has the form
“<name>.<index>”.

For example, without any special assignment, the node name defaults to
the name of the tool. If there is only one node with that name,
no modifications are applied and the node index is ignored:

>>> p = Pipeline()
>>> p.run('bash', cmd='ls')
bash
>>> p.expand()
False
>>> assert p.get("bash") is not None

	Parameters:	name – node name

	Returns:	node name

	Raises LookupError:

		if no such node exists

	
get_edge(source, target)

	Returns the edge between source and target or raises a
KeyError if no such edge exists.

	Parameters:	
	source (Node or Tool) – the source node or tool instance

	target (Node or Tool) – the target node or tool instance

	Returns:	the edge between source and target

	Raises:	
	LookupError – if the source or target node could not be found

	KeyError – if no edge between source and target exists

	
groups()

	Sorts the nodes in topological order and than groups nodes
together if they have a dependency and at least one of the dependency
options is set for streaming.

Yields lists of nodes. Each list represents a group of tools that
need to be executed in parallel to be able to pipe all streams.

	
job(*args, **kwargs)

	Create a new job profile.

The job profile can be used to customize the execution behaviour
of a job. Calling this method will only create a new job profile,
but it will not be applied to any node in the graph. You can however
create nodes from the job profile, using Job.run() or
Job.bash(). These nodes will then get a copy of the job
profile and the profiles properties will be applied before job
execution.

	Parameters:	
	args – args passed to Job

	kwargs – kwargs passed to Job

	Returns:	new job profile

	Return type:	Job

	
name(name)

	Set the name of the pipeline and ensures that all
nodes in the pipeline reference the pipeline name.

	Parameters:	name (string) – the name of the pipeline

	
nodes()

	Generator that yields the nodes of this pipeline

	Returns nodes:	the nodes of this pipeline

	Return type:	list of Node

	
pipeline_name(name)

	Set the user defined name of the pipeline

	Parameters:	name (string) – the user defined name of the pipeline

	
remove(tool, remove_links=True)

	Remove the given tool or node from the pipeline graph.

	Parameters:	tool – tool or node

	
run(_tool_name, _job=None, **kwargs)

	Find the tool specified by name and add it as a node to the pipeline
graph.

All additional keyword arguments are passed as option configuration to
the tool instance, allowing you to configure your tool when you create
it.

Note that the tools validate() method is
called here silently. Exceptions are caught and logged. This is
necessary to allow tools to initialize themselves when they are added
to a pipeline.

	Parameters:	
	_tool_name – a Tool instance or a tool name

	kwargs – all keyword arguments are passed to the tool as option
configurations

	Returns:	the newly added node

	Return type:	Node

	Raises jip.tool.ToolNotFoundException:

		if the specified tool could not
be found

	
skip(excludes)

	Takes a list of node names or node instances and removes the node
and tries to connect parent and children of the node

	Parameters:	excludes (list of string) – list of node names

	
topological_order()

	Generator function that yields the nodes in the graph in
topological order.

Please note that this function does not cache the order and
recalculates it on each call. If you know the pipeline graph will
not change any more and you have to iterate the nodes in order
more than once, you might want to cache the results:

>>> pipeline = Pipeline()
>>> ordered = list(pipeline.topological_order())

	Returns:	yields nodes in topological order

	
validate()

	Validate all nodes in the graph

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.templates

The JIP templates module wraps around the jinja2 template
engine used and allows to render job templates and other strings.

The module stores a global context that is used during script evaluation
and implements the JIP filter functions. The template environment
is stored as a global reverence and the template engine is exposed
thought the render_template() function.

	
class jip.templates.JipUndefined(hint=None, obj=missing, name=None, exc=<class 'jinja2.exceptions.UndefinedError'>)

	Custom undefined implementation that does not modify
unknown variables

	
exception jip.templates.RenderError(template, message, line=None)

	Exception raised in case a tempalte could not be rendered properly

	
jip.templates.environment = None

	the jinja2 environment

	
jip.templates.ext_filter(ctx, value, splitter='.', all=False)

	Cut away the last file extension splitted by splitter.
The default splitter is .

	Parameters:	
	ctx – the context

	value – the file path

	splitter – the splitter

	all – if set to True the left-mose occurence of the split character
is used

	
jip.templates.parent_filter(ctx, value)

	Returns the name of the parent directory of the given file path

	Parameters:	
	ctx – the context

	value – the file path

	Returns:	the name of the parent directory

	
jip.templates.render_template(template, **kwargs)

	Render a template using the given keyword arguments as context

	Parameters:	
	template (string) – the template string

	kwargs – the context

	
jip.templates.replace_filter(ctx, value, search, replace)

	Replaces all hits of the pattern woth the replacement string

	Parameters:	
	ctx – the context

	value – the source value

	search – the search pattern

	replace – the replacement string

	Returns:	the new string

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.tools

Basic pipeline building blocks.

This modules provides the basic building blocks in a JIP pipeline and a way
to search and find them at run-time. The basic buiding blocks are instances
of Tool. The JIP library comes with two sub-classes that can be
used to create tool implementations:

	ScriptTool

	This sub-class of Tool integrates file or script based tool
implementations which can be served from stand-alone script files

	PythonTool

	In contrast to the script tool, this Tool extension allows to create
Tool instances from other, possibly non-related, python classes. The
easiest way to used this is with the jip.tools.tool decorator,
which allows you to take arbitrary python classes and make them jip
tools.

In addition to the Tool implementations, this module provides the
Scanner class, which is used to find tool implementations either
form disk or from an arbitrary python module. This class is supposed to be
used as a singleton and an configured instance is available in the main
jip module, exposed as jip.scanner. The scanner class itself is
configured either through the jip.configuration, or through
environment variables. The Scanner documentation covers both
the environment variables that can be used as well as the configuration
properties.

Decorators

	
class jip.tools.tool(name=None, inputs=None, outputs=None, argparse='register', get_command='get_command', validate='validate', setup='setup', init='init', run='run', pipeline='pipeline', is_done='is_done', cleanup='cleanup', help='help', add_outputs=None, check_files=None, ensure=None, pytool=False, force_pipeline=False)

	Decorate functions and classes and convert them to tools.

The @jip.tool decorator turns classes and functions into valid JIP
tools. The simplest way to use this decorator is to annotate a python
function that returns a string. This string is then interpreted as a
JIP script template. The functions docstring is used, similar to
JIP scripts, to parse command line options and tool input and
output parameters. For example:

@tool()
def mytool():
 '''
 Send a greeting

 usage:
 mytool <name>
 '''
 return 'echo "hello ${name}'"

This create a single bash interpreted script and exposes a tool,
mytool, into the JIP environment. You can use the decorators
arguments to further customize the tool specification, i.e. specify
a different name. If you want to use a different interpreter, you can
return a tuple where the first element is the interpreter name and the
second is the script template.

	Parameters:	
	name – specify a tool name. If no name is specified, the name
of the decorated function or class is used as the tool
name

	inputs – specify a list of option names that are treated
as input options

	outputs – specify a list of option names that are treated as output
options

	argparse – specify the name of the function or a function reference
that take an ArgumentParser instance and populates
it. This takes precedence over the doc string if the
function exists.

	get_command – name of the function or a function reference that
implements the tools get_command function

	validate – name of the function or a function reference that
implements the tools validate function

	setup – name of the function or a function reference that
implements the tools setup function

	init – name of the function or a function reference that
implements the tools init function

	run – name of the function or a function reference that
implements the tools run function

	pipeline – name of the function or a function reference that
implements the tools pipeline function

	is_done – name of the function or a function reference that
implements the tools is_done function

	cleanup – name of the function or a function reference that
implements the tools cleanup function

	help – name of the function or a function reference that
implements the tools help function

	add_outputs – takes a list of values to add hidden output
options

	check_files – takes a list of option names that will be passed
through file checks on validation

	
class jip.tools.pytool(*args, **kwargs)

	This is a decorator that can be used to mark single python functions
as tools. The function will be wrapped in a PythonTool instance and
the function must accept a single paramter self to access to tools
options.

	
class jip.tools.pipeline(*args, **kwargs)

	This is a decorator that can be used to mark single python functions
as pipelines.

Tool classes

	
class jip.tools.Tool(options_source=None, name=None)

	The base class for all implementation of executable units.

This class provides all the building block to integrated new tool
implementations that can be executed, submitted and integrated in pipelines
to construct more complex setups.

A Tool in a JIP setup is considered to be a container for the executions
meta-data, i.e. options and files that are needed to the actual run. The
main function of the Tool class is it get_command()
function, which returns a tuple (interpreter, command), where the
interpreter is a string like “bash” or “perl” or even a path to some
interpreter executable that will be used to execute the command. The
command itself is the string representation of the content of a script that
will be passed to the interpreter at execution time. Please note that
the get_command() functions command part is supposed to be
fully rendered, it will not be modified any further. The JIP default
tool classes that are used, for example, to provide script to the system,
are already integrated with the jip.templates system, but you can
easily use the rendering function directly to create more dynamic commands
that can adopt easily to changed in the configuration of a tool.

The class exposes a name and a path to a source file as properties. Both
are optional and can be omitted in order to implement anonymous tools. In
addition to these meta data, the tools __init__() function
allows you to provide a options_source. This object is used to create the
jip.options.Options that cover the runtime configuration of a
tool. The options are initialize lazily on first access using the
options_source provided at initialization time. This object can be either
a string or an instance of an argparse.ArgumentParser. Both styles of
providing tool options are described in the jip.options module.

	
__init__(options_source=None, name=None)

	Initialize a tool instance. If no options_source is given
the class docstring is used as a the options source.

	Parameters:	
	options_source – either a string or an argparser instance
defaults to the class docstring

	name – the name of this tool

	
check_file(option_name)

	Delegates to the options check name function

	Parameters:	option_name – the name of the option

	
cleanup()

	The celanup method removes all output files for this tool

	
clone(counter=None)

	Clones this instance of the tool and returns the clone. If the
optional counter is profiled, the name of the cloned tool will be
updated using .counter as a suffix.

	
ensure(option_name, check, message=None)

	Check a given option value using the check pattern or function and
raise a ValidationError in case the pattern does not match or the
function does return False.

In case of list values, please note that in case check is a pattern,
all values are checked independently. If check is a function, the
list is passed on as is if the option takes list values, otherwise,
the check function is called for each value independently.

Note also that you should not use this function to check for file
existence. Use the check_file() function on the option or on the
tool instead. check_file checks for incoming dependencies in
pipelines, in which case the file does not exist _yet_ but it
will be created by a parent job.

	Parameters:	
	option_name – the name of the option to check

	check – either a string that is interpreter as a regexp pattern
or a function that takes the options value as a single
paramter and returns True if the value is valid

	
get_command()

	Return a tuple of (template, interpreter) where the template is
a string that will be rendered and the interpreter is a name of
an interpreter that will be used to run the filled template.

	
get_input_files()

	Yields a list of all input files for the options
of this tool. Only TYPE_INPUT options are considered
whose values are strings. If a source for the option
is not None, it has to be equal to this tool.

	Returns:	list of file names

	
get_output_files(sticky=True)

	Yields a list of all output files for the options
of this tool. Only TYPE_OUTPUT options are considered
whose values are strings. If a source for the option
is not None, it has to be equal to this tool.

If sticky is set to False, all options marked with the
sticky flag are ignored

	Parameters:	sticky (boolean) – by default all output option values are returned,
if this is set to False, only non-sticky output
options are yield

	Returns:	list of file names

	
help()

	Return help for this tool. By default this delegates
to the options help.

	
init()

	Initialization method that can be implemented to initialize the tool
instance and, for example, add options. init is called once for
the tool instance and the logic within the init is not allowed to
rely on any values set or applied to the tool.

	Raises Exception:

		in case of a critical error

	
is_done()

	The default implementation return true if the tools has output
files and all output files exist.

	
parse_args(args)

	Parses the given argument. An excetion is raised if
an error ocurres during argument parsing

	Parameters:	args (list of strings) – the argument list

	
pipeline()

	Create and return the pipeline that will run this tool

	
setup()

	Setup method that can be implemented to manipulate tool options
before rendering and validation. Note that options here might still
contain template string. You are also allowed to set option values
to template strings.

	Raises Exception:

		in case of a critical error

	
validate()

	The default implementation validates all options that belong to
this tool and checks that all options that are of TYPE_INPUT
reference existing files.

The method raises a ValidationError in case an option could
not be validated or an input file does not exist.

	
validation_error(message, *args)

	Quickly raise a validation error with a custom message.

This function simply raises a ValidationError. You can use it
in a custom validation implementation to quickly fail the validation

	Parameters:	
	message – the message

	args – argument interpolated into the message

	Raises ValidationError:

		always

	
args

	Returns a dictionary from the option names to the option values

	
options

	Access this tools jip.options.Options instance.

The tools options are the main way to interact with and configure a
tool instance either from outside or from within a pipeline.

	
path = None

	path to the tools source file

	
class jip.tools.ScriptTool(docstring, command_block=None, setup_block=None, init_block=None, validation_block=None, pipeline_block=None)

	An extension of the tool class that is initialized
with a docstring and operates on Blocks that can be loade
form a script file or from string.

If specified as initializer parameters, both the validation and the
pipeline block will be handled with special care.
Pipeline blocks currently can only be embedded python block. Therefore
the interpreter has to be ‘python’. Validation blocks where the
interpreter is ‘python’ will be converted to embedded python blocks. This
allows the validation process to modify the tool and its arguments during
validation.

	
class jip.tools.PythonTool(cls, decorator, add_outputs=None)

	An extension of the tool class that is initialized
with a decorated class to simplify the process of implementing
Tools in python.

Blocks and Block utilities

	
class jip.tools.PythonBlock(content=None, lineno=0)

	Extends block and runs the content as embedded python

	
run(tool, stdin=None, stdout=None)

	Execute this block as an embedded python script

	
terminate()

	The terminate function on a python block does nothing. A
Python block can not be terminated directly

	
class jip.tools.PythonBlockUtils(tool, local_env)

	Utility functions that are exposed in template blocks and template
functions

The block utilities store a reference to the local and global
environment, to the current tool and to the current pipeline.

	
bash(command, **kwargs)

	Create a bash job that executes a bash command.

This us a fast way to build pipelines that execute shell commands. The
functions wraps the given command string in the bash tool that
is defined with input, output, and outfile. Input and
output default to stdin and stdout. Note that you can access your
local context within the command string. Take for example the following
pipeline script:

name = "Joe"
bash("echo 'Hello ${name}'")

This will work as expected. The command template can access local
variables. Please keep in mind that the tools context takes precedence
over the script context. That means that:

input="myfile.txt"
bash("wc -l ${input}")

in this example, the command wc -l will be rendered and wait for
input on stdin. The bash command has an input option and that takes
precedence before the globally defined input variable. This is true
for input, output, and outfile, even if they are not
explicitly set.
You can however access variables defined in the global context using
the _ctx:

input="myfile.txt"
bash("wc -l ${_ctx.input}")

will indeed render and execute wc -l myfile.txt.

	Parameters:	
	command (string) – the bash command to execute

	kwargs – arguments passed into the context used to render the
bash command. input, output, and outfile are
passed as options to the bash tool that is used to
run the command

	Returns:	a new pipeline node that represents the bash job

	Return type:	jip.pipelines.Node

	
check_file(name)

	Checks for the existence of a file referenced by an options.

Please note that this doe not take a file name, but the name
of an option. This function is preferred over a simple check
using os.path.exists() because it also checks for job dependencies.
This is important because a mandatory file might not yet exist
within the context of a pipeline, but it will be created at runtime
in a previous step.

	Parameters:	name – the options name

	Returns:	True if the file exists or the file is created by another
job that will run before this options job is executed.

	Return type:	boolean

	
job(*args, **kwargs)

	Create and returns a new Job.

The job instance can be used to customize the execution environment
for the next job. For example:

job("Test", threads=2).run('mytool', ...)

This is a typical usage in a pipeline context, where a new job
environment is created and then applied to a new ‘mytool’ pipeline
node.

	Parameters:	
	args – job arguments

	kwargs – job keyword arguments

	Returns:	a new job instance

	Return type:	jip.pipelines.Job

	
name(name)

	Set the runtime name of a pipeline.
The runtime name of the pipeline is stored in the database and is
used as a general identifier for a pipeline run.

Note that this set the name of the pipeline if used in a pipeline
context, otherwise it set the name of the tool/job.
Within a pipeline context, you can be changed using a job():

job("my job").run(...)

or after the node was created:

myrun = run(...)
myrun.job.name = “my job”

	Parameters:	name (string) – the name of the pipeline

	
run(_name, **kwargs)

	Searches for a tool with the specified name and adds it as a
new Node to the current pipeline.
All specified keyword argument are passed as option values to
the tool.

Delegates to the pipelines jip.pipelines.Pipeline.run()
method.

	Parameters:	
	_name (string) – the name of the tool

	kwargs – additional argument passed to the tool as options

	Returns:	a new node that executes the specified tool and is added
to the current pipeline

	Return type:	jip.pipelines.Node

	
set(name, value)

	Set an options value.

	Parameters:	
	name (string) – the options name

	value – the new value

	
validation_error(message, *args)

	Quickly raise a validation error with a custom message.

This function simply raises a ValidationError. You can use it
in a custom validation implementation to quickly fail the validation

	Parameters:	
	message – the message

	args – argument interpolated into the message

	Raises ValidationError:

		always

Tool Scanner

	
class jip.tools.Scanner(jip_path=None, jip_modules=None)

	This class holds a script/tool cache
The cache is organized in to dicts, the script_cache, which
store name->instance pairs pointing form the name of the tool
to its cahced instance. The find implementations will return
clones of the instances in the cache.

	
add_folder(path)

	Add a folder to the list of folders that are
scanned for tools.

	Param:	path to the folder that will be added to the search path

	
add_module(path)

	Add a module or a python file to the list of module that are
scanned for tools.

	Param:	path to the module that will be added to the search path

	
find(name, path=None, is_pipeline=False)

	Finds a tool by its name or file name.

If the given name points to an existing file, the file is loaded
as a script tools and returned. Otherwise, a default search is
triggered, optionally including the specified path.

	Returns:	a new instance of the tool

	Return type:	Tool

	Raises ToolNotFoundException:

		if the tool could not be found

	
scan(path=None)

	Searches for scripts and python modules in the configured
locations and returns a dictionary of the detected instances

	Parameters:	path – optional path value to define a folder to scan

	Returns:	dict of tools

	
scan_files(parent=None)

	Scan files for jip tools. This functions detects files with
the .jip extension in the default search locations.

	Parameters:	parent – optional parent folder

	Returns:	list of found files

	
scan_modules()

	Loads the python modules specified in the JIP configuration.
This will register any functions and classes decorated with
one of the JIP decorators.

Exceptions

	
exception jip.tools.ValidationError(source, message)

	Exception raised in validation steps. The exception
carries the source tool and a message.

	
exception jip.tools.ToolNotFoundException

	Raised in case a tool is not found by the scanner

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JIP 0.6 documentation

 	The JIP API

jip.utils

JIP utilities and helper functions

	
jip.utils.flat_list(source)

	Make sure source is a list, else wrap it, and return a flat list.

	Parameters:	source – source list

	Returns:	flat list

	
jip.utils.ignored(*args, **kwds)

	Ignores given set of exception in a with context. For example:

with ignore(Exception):
 ...

This will ignore all Exceptions raised within the with block.

	Parameters:	exceptions – list of exception classes that will be ignored

	
jip.utils.list_dir(base, recursive=True)

	Generator function to iterates a directory
recursively and yields all files.

	Parameters:	
	base – the base directory

	recursively – if true, only the content of the top level directory
will be yield

	
jip.utils.parse_mem(mem)

	Takse a string and parses a memory pattern. The supported suffixes are
G M or K both upper and lower case.

	Parameters:	mem – the memory string

	Returns:	memory in megabyte

	
jip.utils.parse_time(time)

	Parse time string and returns time in minutes.

The string can be either a number, which is the time in
minutes, or of the form:

<int>d<int>h<int>m<int>s

where any part can be left out, but the order matters.

Examples:

	30:

	returns 30 minutes

	1h:

	returns 60 minutes

	2h30m:

	return 150 minutes

In addition, you can use a colon separated format that is either:

HH:MM

or

HH:MM:SS

	Parameters:	time (string) – time string

	Returns:	time in minutes

	Return type:	integer

	Raises:	ValueError in case the time could not be parsed

	
jip.utils.rreplace(s, old, new, occurences=-1)

	Replace all occurencens of ‘old’ with ‘new’
starting at the right hand side of the string. If occurences
is specified, the number of replacements is limited to
occurences.

	Parameters:	
	s (string) – the input string

	old (string) – the string that will be replaced

	new (string) – the replacement string

	occurences (integer) – the maximal number of replacements

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	JIP 0.6 documentation

Jip FAQ

Contents

	Jip FAQ
	API related questions
	How can I define and use a tool?

	How can I access the tool options?

	How can I access local variables within a pipeline?

API related questions

How can I define and use a tool?

Have a look at the following code:

>>> from jip import *
>>> @tool()
... def nop():
... return ""
>>>

this defines a tool called nop, by default the function name is used, you
can drop one in the @tool decorator.

The pipeline run() function takes a string or a tool instance.
The string is used as tool name and a search is performed.

In this example, this would be enough to get the tool and run it:

>>> from jip import *
>>> p = Pipeline()
>>> p.run('nop')
nop

The run() method returns a Node object and also
exposes all the properties of the node including its options.

How can I access the tool options?

Following the example before we can get a Node object
from a pipeline and assign options to it:

>>> p = Pipeline()
>>> n = p.bash('cat ${input}')
>>> n.input = "Makefile"
>>> n.output = "out.txt"

The node has a set() function as a fall-back if direct assignment does not
work, for example, if your option name conflicts with a function name of the
Node object. In that case the Node functions are preferred.

You can always access the tool options using the self.args and
self.options properties. The args dict contains the raw values while
the options dict returns an instance of Option.

If you want to establish dependencies between tools in a pipeline, you have to
use options but if you just want to access values args is fine.

Note

Note that options contain the raw values and are able to render them.
The rendering is performed at the latest time possible though.

How can I access local variables within a pipeline?

Rendering values with access to the local context is done explicitly for JIP
scripts. If you want to access the local context in Python you need to pass the
locals() to the pipeline.

For example:

>>> p = jip.Pipeline()
>>> a = "Makefile"
>>> p.bash("wc -l ${a}")
bash
>>> b = jip.create_jobs(p)[0]
>>> assert b is not None
>>> assert b.command == '(wc -l ${a})'
>>>

Note that the nodes cmd option references “a”, a local variable. To resolve
local variables you should drop the locals() into the pipeline context
function before you return the pipeline or do anything with it:

>>> p = jip.Pipeline()
>>> a = "Makefile"
>>> p.bash("wc -l ${a}")
bash
>>> p.context(locals())
>>> b = jip.create_jobs(p)[0]
>>> assert b is not None
>>> print b.command
(wc -l Makefile)
>>> assert str(b.command) == '(wc -l Makefile)', b.command + "haha"

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	JIP 0.6 documentation

 Python Module Index

 j

 			

 		
 j	

 	[image: -]
 	
 jip	

 	
 	
 jip.cli	

 	
 	
 jip.cluster	

 	
 	
 jip.configuration	

 	
 	
 jip.db	

 	
 	
 jip.executils	

 	
 	
 jip.jobs	

 	
 	
 jip.options	

 	
 	
 jip.pipelines	

 	
 	
 jip.profiles	

 	
 	
 jip.templates	

 	
 	
 jip.tools	

 	
 	
 jip.utils	

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	JIP 0.6 documentation

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	$HOME

_

 	

 	__init__() (jip.options.Options method)

 	

 	(jip.tools.Tool method)

A

 	

 	account (jip.db.Job attribute), [1]

 	add() (jip.options.Options method)

 	

 	(jip.pipelines.Pipeline method)

 	add_edge() (jip.pipelines.Pipeline method)

 	add_folder() (jip.tools.Scanner method)

 	add_input() (jip.options.Options method)

 	add_link() (jip.pipelines.Edge method)

 	add_module() (jip.tools.Scanner method)

 	add_option() (jip.options.Options method)

 	

 	add_output() (jip.options.Options method)

 	additional_options (jip.db.Job attribute)

 	append() (jip.options.Option method)

 	apply() (jip.profiles.Profile method)

 	apply_overwrite() (jip.profiles.Profile method)

 	apply_to_pipeline() (jip.profiles.Profile method)

 	archived (jip.db.Job attribute), [1]

 	args (jip.tools.Tool attribute)

B

 	

 	bash() (jip.pipelines.Job method)

 	

 	(jip.pipelines.Pipeline method)

 	(jip.tools.PythonBlockUtils method)

C

 	

 	cancel() (in module jip.jobs)

 	

 	(jip.cluster.Cluster method)

 	check_file() (jip.options.Option method)

 	

 	(jip.tools.PythonBlockUtils method)

 	(jip.tools.Tool method)

 	check_files() (jip.options.Option method)

 	check_output_files() (in module jip.jobs)

 	check_queued_jobs() (in module jip.jobs)

 	children (jip.db.Job attribute)

 	children() (jip.pipelines.Node method)

 	clean() (in module jip.jobs)

 	cleanup() (jip.tools.Tool method)

 	clone() (jip.tools.Tool method)

 	Cluster (class in jip.cluster)

 	ClusterImplementationError

 	colorize() (in module jip.cli)

 	command (jip.db.Job attribute), [1]

 	

 	commit_session() (in module jip.db)

 	Config (class in jip.configuration)

 	configuration (jip.db.Job attribute), [1]

 	confirm() (in module jip.cli)

 	context() (jip.pipelines.Pipeline method)

 	copy() (jip.options.Option method)

 	create_date (jip.db.Job attribute), [1]

 	create_dispatcher_graph() (in module jip.executils)

 	create_executions() (in module jip.jobs)

 	create_groups() (in module jip.jobs)

 	create_job_env() (in module jip.jobs)

 	create_jobs() (in module jip.jobs)

 	create_session() (in module jip.db)

 	create_table() (in module jip.cli)

D

 	

 	delete() (in module jip.db)

 	

 	(in module jip.jobs)

 	dependencies (jip.db.Job attribute), [1]

 	depends_on() (jip.pipelines.Node method)

 	

 	dir (jip.profiles.Profile attribute)

 	DispatcherNode (class in jip.executils)

 	dry() (in module jip.cli)

E

 	

 	Edge (class in jip.pipelines)

 	edges (jip.pipelines.Pipeline attribute)

 	ensure() (jip.tools.Tool method)

 	env (jip.db.Job attribute), [1]

 	environment (in module jip.templates)

 	

 	(jip.db.Job attribute), [1]

 	
 environment variable

 	

 	$HOME

 	JIP_CONFIG

 	JIP_DB

 	JIP_MODULES, [1], [2]

 	JIP_PATH, [1]

 	PATH

 	PYTHONPATH

 	

 	err (jip.profiles.Profile attribute)

 	exclude() (jip.pipelines.Pipeline method)

 	expand() (jip.options.Option method)

 	

 	(jip.pipelines.Pipeline method)

 	ext_filter() (in module jip.templates)

 	extra (jip.db.Job attribute), [1]

F

 	

 	find() (jip.tools.Scanner method)

 	finish_date (jip.db.Job attribute), [1]

 	flat_list() (in module jip.utils)

 	from_argparse() (jip.options.Options class method)

 	from_dict() (jip.profiles.Profile class method)

 	

 	from_docopt() (jip.options.Options class method)

 	from_file() (jip.profiles.Profile class method)

 	from_job() (jip.profiles.Profile class method)

 	from_node() (in module jip.jobs)

G

 	

 	get() (in module jip.cluster)

 	

 	(in module jip.db)

 	(in module jip.profiles)

 	(jip.configuration.Config method)

 	(jip.options.Option method)

 	(jip.pipelines.Pipeline method)

 	get_active_jobs() (in module jip.db)

 	get_all() (in module jip.db)

 	get_by_type() (jip.options.Options method)

 	get_cluster_command() (jip.db.Job method), [1]

 	get_command() (jip.tools.Tool method)

 	get_current_state() (in module jip.db)

 	get_default_input() (jip.options.Options method)

 	get_default_output() (jip.options.Options method)

 	get_edge() (jip.pipelines.Pipeline method)

 	get_incoming_link() (jip.pipelines.Node method)

 	get_input_files() (jip.db.Job method)

 	

 	(jip.tools.Tool method)

 	get_opt() (jip.options.Option method)

 	get_outgoing_link() (jip.pipelines.Node method)

 	

 	get_output_files() (jip.db.Job method), [1]

 	

 	(jip.tools.Tool method)

 	get_parents() (in module jip.jobs)

 	get_pipe_parent() (in module jip.jobs)

 	get_pipe_targets() (jip.db.Job method), [1]

 	get_specs() (in module jip.profiles)

 	get_stream_input() (jip.pipelines.Node method)

 	get_streaming_link() (jip.pipelines.Edge method)

 	get_subgraph() (in module jip.jobs)

 	glob() (jip.options.Option method)

 	glob_inputs() (jip.options.Options method)

 	group() (jip.pipelines.Node method)

 	group_from (jip.db.Job attribute)

 	group_to (jip.db.Job attribute)

 	groups() (jip.pipelines.Pipeline method)

H

 	

 	has_incoming() (jip.pipelines.Node method)

 	has_outgoing() (jip.pipelines.Node method)

 	has_streaming_link() (jip.pipelines.Edge method)

 	

 	help() (jip.options.Options method)

 	

 	(jip.tools.Tool method)

 	hold() (in module jip.jobs)

 	hosts (jip.db.Job attribute), [1]

I

 	

 	id (jip.db.Job attribute), [1]

 	ignored() (in module jip.utils)

 	in_files (jip.db.Job attribute)

 	incoming() (jip.pipelines.Node method)

 	init() (in module jip.db)

 	

 	(jip.tools.Tool method)

 	interpreter (jip.db.Job attribute), [1]

 	

 	is_dependency() (jip.options.Option method)

 	is_done() (jip.db.Job method), [1]

 	

 	(jip.tools.Tool method)

 	is_list() (jip.options.Option method)

 	is_stream() (jip.options.Option method)

 	is_stream_source() (jip.db.Job method), [1]

 	is_stream_target() (jip.db.Job method), [1]

J

 	

 	jip.cli (module)

 	jip.cluster (module)

 	jip.configuration (module)

 	jip.db (module)

 	jip.executils (module)

 	jip.jobs (module)

 	jip.options (module)

 	jip.pipelines (module)

 	jip.profiles (module)

 	jip.templates (module)

 	jip.tools (module)

 	

 	jip.utils (module)

 	JIP_CONFIG

 	JIP_DB

 	JIP_MODULES, [1], [2]

 	JIP_PATH, [1]

 	JipUndefined (class in jip.templates)

 	Job (class in jip.db)

 	

 	(class in jip.pipelines)

 	job (jip.pipelines.Node attribute)

 	job() (jip.pipelines.Pipeline method)

 	

 	(jip.tools.PythonBlockUtils method)

 	job_id (jip.db.Job attribute), [1]

K

 	

 	keep_on_fail (jip.db.Job attribute), [1]

L

 	

 	list() (jip.cluster.Cluster method)

 	list_dir() (in module jip.utils)

 	load() (jip.profiles.Profile method)

 	

 	load_args() (jip.profiles.Profile method)

 	LSF (class in jip.cluster)

M

 	

 	make_absolute() (jip.options.Option method)

 	

 	(jip.options.Options method)

 	max_memory (jip.db.Job attribute), [1]

 	

 	max_time (jip.db.Job attribute), [1]

 	merge() (jip.profiles.Profile method)

N

 	

 	name (jip.db.Job attribute), [1]

 	

 	(jip.pipelines.Job attribute)

 	(jip.pipelines.Node attribute)

 	(jip.profiles.Profile attribute)

 	name() (jip.pipelines.Pipeline method)

 	

 	(jip.tools.PythonBlockUtils method)

 	Node (class in jip.pipelines)

 	

 	nodes (jip.db.Job attribute), [1]

 	nodes() (jip.pipelines.Pipeline method)

O

 	

 	on_success (jip.db.Job attribute)

 	on_success() (jip.pipelines.Node method)

 	Option (class in jip.options)

 	Options (class in jip.options)

 	

 	options (jip.tools.Tool attribute)

 	out_files (jip.db.Job attribute)

 	outgoing() (jip.pipelines.Node method)

P

 	

 	parent_filter() (in module jip.templates)

 	parents() (jip.pipelines.Node method)

 	parse() (jip.options.Options method)

 	parse_args() (in module jip.cli)

 	

 	(jip.tools.Tool method)

 	parse_job_ids() (in module jip.cli)

 	parse_mem() (in module jip.utils)

 	parse_time() (in module jip.utils)

 	ParserException

 	PATH

 	path (jip.db.Job attribute), [1]

 	

 	(jip.tools.Tool attribute)

 	PBS (class in jip.cluster)

 	pipe_form (jip.db.Job attribute)

 	pipe_targets (jip.db.Job attribute), [1]

 	pipe_to (jip.db.Job attribute)

 	

 	Pipeline (class in jip.pipelines)

 	pipeline (class in jip.tools)

 	

 	(jip.db.Job attribute), [1]

 	pipeline() (jip.tools.Tool method)

 	pipeline_name (jip.db.Job attribute)

 	pipeline_name() (jip.pipelines.Node method)

 	

 	(jip.pipelines.Pipeline method)

 	priority (jip.db.Job attribute), [1]

 	Profile (class in jip.profiles)

 	project (jip.db.Job attribute), [1]

 	PythonBlock (class in jip.tools)

 	PythonBlockUtils (class in jip.tools)

 	PYTHONPATH

 	PythonTool (class in jip.tools)

 	pytool (class in jip.tools)

Q

 	

 	query() (in module jip.db)

 	query_by_files() (in module jip.db)

 	

 	queue (jip.db.Job attribute), [1]

R

 	

 	raw() (jip.options.Option method)

 	read_ids_from_pipe() (in module jip.cli)

 	remove() (jip.pipelines.Pipeline method)

 	remove_links() (jip.pipelines.Edge method)

 	render_table() (in module jip.cli)

 	render_template() (in module jip.templates)

 	RenderError

 	replace_filter() (in module jip.templates)

 	

 	resolve_job_range() (in module jip.cli)

 	resolve_jobs() (in module jip.jobs)

 	resolve_log() (jip.cluster.Cluster method)

 	restore_configuration() (jip.db.Job method)

 	rreplace() (in module jip.utils)

 	run() (jip.db.Job method), [1]

 	

 	(jip.executils.DispatcherNode method)

 	(jip.pipelines.Job method)

 	(jip.pipelines.Pipeline method)

 	(jip.tools.PythonBlock method)

 	(jip.tools.PythonBlockUtils method)

 	run_job() (in module jip.jobs)

S

 	

 	save() (in module jip.db)

 	scan() (jip.tools.Scanner method)

 	scan_files() (jip.tools.Scanner method)

 	scan_modules() (jip.tools.Scanner method)

 	Scanner (class in jip.tools)

 	ScriptTool (class in jip.tools)

 	set() (jip.options.Option method)

 	

 	(jip.pipelines.Node method)

 	(jip.tools.PythonBlockUtils method)

 	set_state() (in module jip.jobs)

 	setup() (jip.tools.Tool method)

 	SGE (class in jip.cluster)

 	show_commands() (in module jip.cli)

 	show_dry() (in module jip.cli)

 	show_job_profiles() (in module jip.cli)

 	show_job_states() (in module jip.cli)

 	show_job_tree() (in module jip.cli)

 	show_options() (in module jip.cli)

 	skip() (jip.pipelines.Pipeline method)

 	

 	Slurm (class in jip.cluster)

 	specs (in module jip.profiles)

 	start_date (jip.db.Job attribute), [1]

 	state (jip.db.Job attribute), [1]

 	STATE_CANCELED (in module jip.db)

 	STATE_COLORS (in module jip.cli)

 	STATE_DONE (in module jip.db)

 	STATE_FAILED (in module jip.db)

 	STATE_HOLD (in module jip.db)

 	STATE_QUEUED (in module jip.db)

 	STATE_RUNNING (in module jip.db)

 	stderr (jip.db.Job attribute), [1]

 	stdout (jip.db.Job attribute), [1]

 	SubmissionError

 	submit() (jip.cluster.Cluster method)

 	submit_job() (in module jip.jobs)

T

 	

 	table_to_string() (in module jip.cli)

 	tasks (jip.db.Job attribute), [1]

 	tasks_per_node (jip.db.Job attribute), [1]

 	temp (jip.db.Job attribute), [1]

 	terminate() (jip.db.Job method), [1]

 	

 	(jip.tools.PythonBlock method)

 	threads (jip.db.Job attribute), [1]

 	to_cmd() (jip.options.Option method)

 	

 	(jip.options.Options method)

 	to_dict() (jip.options.Options method)

 	

 	Tool (class in jip.tools)

 	tool (class in jip.tools)

 	

 	(jip.db.Job attribute), [1]

 	tool_name (jip.db.Job attribute), [1]

 	ToolNotFoundException

 	topological_order() (in module jip.jobs)

 	

 	(jip.pipelines.Pipeline method)

 	TYPE_INPUT (in module jip.options)

 	TYPE_OPTION (in module jip.options)

 	TYPE_OUTPUT (in module jip.options)

U

 	

 	update() (jip.cluster.Cluster method)

 	

 	(jip.profiles.Profile method)

 	update_archived() (in module jip.db)

 	update_job_states() (in module jip.db)

 	

 	usage() (jip.options.Options method)

 	user (jip.db.Job attribute), [1]

V

 	

 	validate() (jip.db.Job method), [1]

 	

 	(jip.options.Option method)

 	(jip.options.Options method)

 	(jip.pipelines.Pipeline method)

 	(jip.tools.Tool method)

 	validation_error() (jip.tools.PythonBlockUtils method)

 	

 	(jip.tools.Tool method)

 	

 	ValidationError

 	value (jip.options.Option attribute)

W

 	

 	wait() (jip.executils.DispatcherNode method)

 	

 	working_directory (jip.db.Job attribute), [1]

 Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

 _images/stream_dispatch.png
D @0 T

search.html

 Navigation

 		
 index

 		
 modules |

 		JIP 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

_images/single_tool_def.png
Tool

Validation

Execution

Inputs Outputs

Options

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/stream_dispatch.png
D @0 T

_static/up.png

_static/single_tool_def.png
Tool

Validation

Execution

Inputs Outputs

Options

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

cli/job_options.html

 Navigation

 		
 index

 		
 modules |

 		JIP 0.6 documentation »

 Options
-P <profile>, –profile <profile> Select a job profile for resubmission
-t <time>, –time <time> Max wallclock time for the job
-q <queue>, –queue <queue> Job queue
-p <priority>, –priority <priority> Job priority
-A <account>, –account <account> The account to use for submission
-C <threads>, –threads <cpus> Number of CPU’s assigned to the job
-m <mem>, –mem <mem> Max memory assigned to the job
-n <name>, –name <name> Job name
-R <reload>, –reload Reload and rerender the job command
-E <err>, –log <err> Jobs stderr log file
-O <out>, –out <out> Jobs stdout log file
-s, –submit Submit as job to the cluster
–hold Put job on hold after submission
–keep Keep output also in case of failure
–dry Show a dry run
–show Show the command that will be executed
–force Force execution/submission
endoptions

 © Copyright 2013, Thasso Griebel.
 Created using Sphinx 1.2.2.

